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In the previous presentation, Erik Sintorn presented methods for practically 
constructing a DAG structure from a voxel data set. This presentation presents how 
such a DAG structure can be accessed immediately – without decompressing it first –
for ray casting.
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The setup is just like any other ray casting problem: Given a ray, the goal is to find its 
intersection(s). More specifically, we want to identify whether a ray intersects with 
the voxel geometry and if so, we want to retrieve the position of the intersection and 
the identity of the intersected voxel.
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Let’s review the DAG structure. For the purpose of ray casting, we need to know the 
following:

- Each node has between one and eight children.
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Let’s review the DAG structure. For the purpose of ray casting, we need to know the 
following:

- Each node has between one and eight children.
- It is not a complete, balanced or otherwise “nice” tree …
- … and it uses pointers internally, which we will need to fetch and follow.

This is very similar to an ordinary sparse voxel octree with the exception that the DAG 
cannot store backwards links (i.e., links towards the root node). This is because, 
unlike the SVO, each sub-tree of the DAG can potentially be reached from multiple 
different sources. A second consequence of this is that up to eight distinct pointers 
are required per node, whereas a single pointer per node suffices for an SVO.
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One simple way to store a DAG is to place all the nodes consecutively in an array. 

Additional notes: 
While simple, explicitly separating nodes from different levels into distinct arrays or 
ranges in a single array may be a good idea (this isn’t done here, nodes can appear in 
any order). The current level is generally known during traversal, so there is little-to-
no overhead for doing so. On the other hand, this enables a few different things: 
lower levels could be streamed in on demand. Since there are fewer nodes per level 
compared to the whole tree, it’s also possible to have shorter child-pointers (see next 
slide) at the various levels.

Nodes may be sorted arbitrarily either within the single array or within each level. For 
example if there is a well-known initial view of a scene, one could pack all nodes 
visible in this initial setup compactly at the beginning of the array/arrays, and initially 
only upload these to the GPU.
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Each node contains two parts:
- The child mask, which describes which children are present for the current node. 

This is typically a bit mask with eight bits – one per potential child.
- One or more pointers to the child-nodes

The number of points is equal to the number of present children, i.e., it may vary 
between different nodes.
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When storing the DAG in a single array, the pointers just become indices into this 
array. For example, we store the DAG in an array of 32 bit words. A pointer points to 
the word containing the child mask. The 8-bit child mask is padded to 32 bits, which 
seems wasteful on first glance, but the other 24 bits can be used to store additional 
information that applies to the whole subtree. Examples include opacity information 
(see later presentations on Shadows) or information required to access attributes. 

Immediately following the child mask are the pointers. These are simply 32-bit 
(unsigned) integers containing the index of the word containing the corresponding 
child-node’s child mask.

Using only 32-bit aligned 32-bit words makes reading data from the DAG memory 
much simpler/efficient.
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As mentioned in the beginning, one an intersection has been found, we need to 
identify the corresponding voxel somehow. As we have seen in earlier presentations, 
the path through the DAG to the node uniquely identifies a leaf (or interior node). 

For example, in a binary DAG (as shown in the figure), at each level we may decide to 
either go left or right in the tree. We record either a zero or one at each step based 
on the decision.
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identify the corresponding voxel somehow. As we have seen in earlier presentations, 
the path through the DAG to the node uniquely identifies a leaf (or interior node). 

For example, in a binary DAG (as shown in the figure), at each level we may decide to 
either go left or right in the tree. We record either a zero or one at each step based on 
the decision.

In this case, in order to reach the highlighted node, we first go left (=0) … then right 
(=1)
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As mentioned in the beginning, one an intersection has been found, we need to 
identify the corresponding voxel somehow. As we have seen in earlier presentations, 
the path through the DAG to the node uniquely identifies a leaf (or interior node). 

For example, in a binary DAG (as shown in the figure), at each level we may decide to 
either go left or right in the tree. We record either a zero or one at each step based on 
the decision.

In this case, in order to reach the highlighted node, we first go left (=0) … then right 
(=1) and then right (=1) again, giving us the final path of 011. 

To extend this to a octree (or quadtree), we simply treat each axis separately…
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… so, for the voxel DAG we end up with tree bit strings, one for each axis.

These uniquely identify voxel. But they are also equivalent to a position.

If we interpret the bit string as an integer, it corresponds to the integer position of the 
voxel on the corresponding axis…
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… so, for the voxel DAG we end up with tree bit strings, one for each axis.

These uniquely identify voxel. But they are also equivalent to a position.

If we interpret the bit string as an integer, it corresponds to the integer position of the 
voxel on the corresponding axis…

… We can obviously convert the position to any other space if we know the DAGs root 
bounding box/volume.
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Traversing a voxel DAG is, in general terms, the same as any other tree traversal…
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Traversing a voxel DAG is, in general terms, the same as any other tree traversal…

- We start at the root node
- … and we want to visit the children that (a) exist …
- … and (b) intersect the ray

This is repeated until we either ..
… hit a leaf node (or a node at the desired level), as illustrated here, or leave the root 
node, at which point we know that the ray did not intersect with the voxel geometry.
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As illustrated, the traversal is depth first (and thus fairly cheap in terms of memory 
requirements).

If we want to find the first intersection (as opposed to just any), we need to visit the 
children in the right order at each level; that is, we want to descend into the child 
closest to the rays origin first. In the illustration here, this is the left child. Only after 
determining that the is no intersection in this left child, will we descend into the right 
child.
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During traversal, there are essentially two phases:
- Descending further down into the DAG
- Ascending to higher-level nodes when no intersections are found
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When descending, we need to figure out which child we should visit according to our 
ordering requirements. We then need to figure out the pointer corresponding to this 
child, fetch it and follow it. Finally, when doing this, we need to record the decision to 
build up the path.
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The index of the pointer varies a bit, as it depends on the number of present children 
“preceding” the selected one. An efficient implementation to solve this will be shown 
later.
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When we arrive at a node with no intersecting children, or where we’ve visited all 
intersecting children, we need to ascend to the parent node, that is, the node from 
which we earlier descended into the current node. To do this, well, we need to figure 
out where we came from.

There are essentially two options:
- Explicitly store where we have come from (using e.g., a stack)
- Or by repeating the steps that we’ve taken to get us here.

The latter information is available via the path that we’ve been recording, so we just 
need to replay it up to the second-to-last decision.
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When we arrive at a node with no intersecting children, or where we’ve visited all 
intersecting children, we need to ascend to the parent node, that is, the node from 
which we earlier descended into the current node. To do this, well, we need to figure 
out where we came from.

There are essentially two options:
- Explicitly store where we have come from (using e.g., a stack)
- Or by repeating the steps that we’ve taken to get us here.

The latter information is available via the path that we’ve been recording, so we just 
need to replay it up to the second-to-last decision.

Additionally, we need to keep track of which children we’ve already visited at each 
node, as to avoid revisiting certain subtrees. There are a few options available. One 
option is to store this explicitly somewhere. A different one is to store a coordinate 
along the ray and update it during traversal as well, essentially indicating which nodes 
we’ve already “left behind”.
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I will now move on to describe one particular implementation in somewhat more 
detail. This particular method has been used Chalmers for a couple of years now.
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It’s a GPU-based method, implemented in CUDA. However, there are no CUDA 
specific operations, so the general idea should be implementable in most modern 
shader environments.

Additional information:
As mentioned by Ulf Assarsson after the talk, we implemented a DAG ray caster in 
GLSL targeting WebGL 2.0. The DAG structure can be encoded into textures (rather 
than simple buffers/arrays) should this be necessary. The tricky part is storing the 
stack, should local memory not be an option. In such a case, replaying the path + 
advancing along the ray might be a more appropriate option.
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This implementation uses a small per-thread array to implement a per-thread stack.

Each entry on the stack contains two 32-bit values: the node’s base index (i.e., the 
index of the word containing the child mask), and an intersection mask, which 
indicates the children that are present, and intersected by the ray and not yet visited. 
This intersection mask is the explicitly stored state mentioned earlier. We also store a 
copy of the original child mask; this avoids having to re-fetch it from the DAGs 
memory.

Paths are recoded pretty much as described earlier, specifically in three 32-bit 
unsigned integers.
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This implementation uses a small per-thread array to implement a per-thread stack.

Each entry on the stack contains two 32-bit values: the node’s base index (i.e., the 
index of the word containing the child mask), and an intersection mask, which 
indicates the children that are present, and intersected by the ray and not yet visited. 
This intersection mask is the explicitly stored state mentioned earlier. We also store a 
copy of the original child mask; this avoids having to re-fetch it from the DAGs 
memory.

Paths are recoded pretty much as described earlier, specifically in three 32-bit 
unsigned integers.

As indicated in earlier talks, the last two levels of the DAG are stored differently. 
Instead of storing the DAG structure, the full 4x4x4 voxel sub-volume is packed into a 
single 64-bit mask (using two 32-bit words).
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First, let’s look at the descending-phase of the traversal in a bit more detail.

When we descend into a node, we need to
- Push the parent index and intersection mask (+ child mask) onto the stack, in case 

we should later return to it
- Then we need to fetch the child mask of the new node
- Based on this, we want to compute the initial intersection mask, which tells us 

which children we need to visit

If the intersection mask is zero, we should ascend to the parent node (described 
later). If it is non-zero, we need to identify the child closest along the ray. We then 
want to update the intersection mask to indicate that we’ve already visited that child. 
Then, we need to find correct pointer and so that we can fetch and follow it to 
descend further into the DAG.

I will briefly detail three operations in the following slides:
1. Computing the intersection mask
2. Identifying the closest child
3. Computing the index of the pointer
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The intersection mask tells us which children we need to visit. Initially it is 
constructed by combining
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The intersection mask tells us which children we need to visit. Initially it is constructed 
by combining
- The bit mask indicating which children then the ray intersects
- The bit mask indicating the present children (i.e., the child mask)
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The intersection mask tells us which children we need to visit. Initially it is constructed 
by combining
- The bit mask indicating which children then the ray intersects
- The bit mask indicating the present children (i.e., the child mask)
using bit-wise and.
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The first bit-mask may be computed from a number of points, as follows.

First, we need the intersection points between the ray and the bounding box of the 
current node, as shown here.
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The first bit-mask may be computed from a number of points, as follows.

First, we need the intersection points between the ray and the bounding box of the 
current node, as shown here.
Second, we need the intersection points between the ray and the axis aligned planes 
bisecting the current node; that is, intersections with the planes that go through the 
middle of the node. This figure shows two of them, the final t_z is not shown here.
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We then perform checks for each axis. In this example, I will begin with the X-axis.
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We then perform checks for each axis. In this example, I will begin with the X-axis.

If the intersection point (t_x) is in the range of t_min and t_max, we will add the 
children that are located in the same half of the node as the t_y intersection and in 
the same half as the t_z intersection, giving us the children in one quarter of the 
node. These will be added to the intersection mask.

Additional notes:
We include a small epsilon to the check for which half of the node the intersection 
lies in – this avoids some numerical problems. Essentially, the nodes in the top figure 
are added if t_y is larger than (MidPlane_y – epsilon); the nodes in the bottom would 
have been added if t_y was smaller than (MidPlane_y + epsilon). This can be 
implemented efficiently using bitwise operations (ORing the cases for each axis and 
ANDing the results). More than a quarter of the node can be added for each axis, 
though. 
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We then perform checks for each axis. In this example, I will begin with the X-axis.

If the intersection point (t_x) is in the range of t_min and t_max, we will add the 
children that are located in the same half of the node as the t_y intersection and in 
the same half as the t_z intersection, giving us the children in one quarter of the node. 
These will be added to the intersection mask.

The same operation is repeated for the other axes.
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We then perform checks for each axis. In this example, I will begin with the X-axis.

If the intersection point (t_x) is in the range of t_min and t_max, we will add the 
children that are located in the same half of the node as the t_y intersection and in 
the same half as the t_z intersection, giving us the children in one quarter of the node. 
These will be added to the intersection mask.

The same operation is repeated for the other axes. I will briefly illustrate the Y-axis as 
well.
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We then perform checks for each axis. In this example, I will begin with the X-axis.

If the intersection point (t_x) is in the range of t_min and t_max, we will add the 
children that are located in the same half of the node as the t_y intersection and in 
the same half as the t_z intersection, giving us the children in one quarter of the node. 
These will be added to the intersection mask.

The same operation is repeated for the other axes. I will briefly illustrate the Y-axis as 
well, which adds the node as indicated. I will omit the Z-axis here, but one would 
have to repeat the same operations for it too.
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We then perform checks for each axis. In this example, I will begin with the X-axis.

If the intersection point (t_x) is in the range of t_min and t_max, we will add the 
children that are located in the same half of the node as the t_y intersection and in 
the same half as the t_z intersection, giving us the children in one quarter of the node. 
These will be added to the intersection mask.

The same operation is repeated for the other axes. I will briefly illustrate the Y-axis as 
well, which adds the node as indicated. I will omit the Z-axis here, but one would have 
to repeat the same operations for it too.

As we see, there is a problematic case that has been illustrated in the bottom figure: 
the previous steps added no children to the mask, despite the ray intersecting with 
one of them.
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We then perform checks for each axis. In this example, I will begin with the X-axis.

If the intersection point (t_x) is in the range of t_min and t_max, we will add the 
children that are located in the same half of the node as the t_y intersection and in 
the same half as the t_z intersection, giving us the children in one quarter of the node. 
These will be added to the intersection mask.

The same operation is repeated for the other axes. I will briefly illustrate the Y-axis as 
well, which adds the node as indicated. I will omit the Z-axis here, but one would have 
to repeat the same operations for it too.

As we see, there is a problematic case that has been illustrated in the bottom figure: 
the previous steps added no children to the mask, despite the ray intersecting with 
one of them.

This is fixed by computing the mid point between t_min and t_max.
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We then perform checks for each axis. In this example, I will begin with the X-axis.

If the intersection point (t_x) is in the range of t_min and t_max, we will add the 
children that are located in the same half of the node as the t_y intersection and in 
the same half as the t_z intersection, giving us the children in one quarter of the node. 
These will be added to the intersection mask.

The same operation is repeated for the other axes. I will briefly illustrate the Y-axis as 
well, which adds the node as indicated. I will omit the Z-axis here, but one would have 
to repeat the same operations for it too.

As we see, there is a problematic case that has been illustrated in the bottom figure: 
the previous steps added no children to the mask, despite the ray intersecting with 
one of them.

This is fixed by computing the mid point between t_min and t_max, and simply adding 
the child in the octant where this midpoint resides. In the top figure, no new children 
were added – this doesn’t generate any false positives.
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The computed intersection mask is combined with the child mask to give final 
intersection mask indicating which children should be visited.
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The second item I wanted to highlight is the order in which children are visited.

There are eight different possibilities, and these are determined by the signs of the 
components of the ray’s direction vector.
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The second item I wanted to highlight is the order in which children are visited.

There are eight different possibilities, and these are determined by the signs of the 
components of the ray’s direction vector.

So far, the most efficient way seems to be the use of a pre-computed table. The table 
gives the index of the next child that we should descend into, given the discretized 
ray direction (8 values) and the current intersection mask (256 values). The final table 
contains 8*256 (=2 k) entries; each entry can be packed into a single byte.

Additional Information:
The direction can be stored as a bit mask with 3 bits. Bit 3 is set to one if the x-
component of the ray’s direction is negative. Bit 2 is set to one if the y-component is 
negative, and bit 1 is set to one if the z-component is negative. Call this the 
directionMask.

The lookup table may then be computed as follows:
- For each direction d in [0, 8)
- For each intersection mask m in [0,256)
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- for( i = 0; i < 8; ++i ) { j = directionMask ^ i; if bit j in is set in m, set lut[d*256+mask] 
= j; }
(technically, m = 0 has no bits set, but we should never ask for the next child of an 
intersection mask with no bits set.)
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Once we know the (bit index) of the child we should visit next, we need to figure out 
which pointer corresponds to that child. This depends on the number of children 
present before the selected child (in the figure, this is the number of children present 
to the right of the selected one – zero in the upper figure and one in the lower one).
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Once we know the (bit index) of the child we should visit next, we need to figure out 
which pointer corresponds to that child. This depends on the number of children 
present before the selected child (in the figure, this is the number of children present 
to the right of the selected one – zero in the upper figure and one in the lower one).

The pointer’s index can be computed in three steps:
- First, we build a mask with the bits below the selected child set
- Second, we AND it with the child mask – this is where the cached child mask is 

required!
- Finally, we count the number of set bits using e.g., the __popc() intrinsic in CUDA. 

Similar intrinsics are available elsewhere (alternatively BitTwiddlingHacks has a 
reasonable implementation).

62



Whenever the child mask becomes zero, we need to ascend.

This is fairly simple: all the information we need is stored on the stack. First, we 
retrieve the intersection mask for the parent node from the stack. If it is zero, we will 
continue ascending. If it is non-zero, we want to descend into the next child, as 
indicated by the mask. We do this by passing the retrieved intersection mask to the 
lookup-table, get the child number, mask out the corresponding bit in the 
intersection mask … and so on, as described earlier.

If we ascend “out of the root node”, we’ve finished – there were no intersections with 
the voxel geometry.
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If, during descending, we reach the second-to-last level, we need to something 
slightly different.

First, we fetch the two 32-bit words that contain the leaf geometry for the 4x4x4 
voxel sub-volume represented by the current node.

From these two 32-bit words, it is possible to reconstruct a 8 bit child mask for the 
current level. By doing this, we can just reuse the machinery described so far … i.e., 
we can just plug the reconstructed child mask into the function for computing the 
intersection mask and then “descend” into the last level nodes. At this point, we 
don’t need to touch the stack, which avoids some reads and writes to potentially 
slow memory.

At the last level, we do the same again – we extract the eight bits corresponding to 
the geometry of the selected child, and compute the intersection mask for this. If the 
mask is non-zero, the first child in the order along the ray is the intersection that 
we’re looking for. If the mask is zero, we need to visit the other children from the 
parent node, or, if none remain, enter the ascending phase.
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This concludes the presentation on practical ray casting against the DAG structure.

To summarize: DAGs behave a lot like an ordinary tree during ray casting – we did not 
consider merged sub-trees specially. Thus, if you have a traversal code, it shouldn’t be 
too hard to adapt to a DAG (which is also one of the DAGs strengths). I also presented 
one possible traversal method that is fairly well tested at this point, and that should 
be fairly efficient on modern GPUs.

Additional Information:
Code will be made available in the coming weeks (i.e. after Eurographics 2018 
concludes). I will link to the code from my homepage at

https://newq.net/publications/more/eg2018-voxel-dag-tutorial
(It will likely be on GitHub – but these slides might or might not get updated with the 
finalized information.)
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