Introduction

Part 2

The standard DAG compression of geometry

[am:
UIf Assarsson,
Chalmers University of Technology,
Goteborg, Sweden.

Course: Voxel DAGs. fUIf Assarsson

Compression performance, why/when and where we get compression.

Good morning everyone and welcome to the course. My name is... I'm a prof. at.. Our
research group started working on voxels and DAGs almost 8 years ago.

| will start with a movie we showed at fast forward Siggraph 2013.

High resolution voxelized geometry

I:i'.' - ‘

Fast forward, siggraph 2013.

| will explain why there is the amount of subgraph-merging opportunities, and why

and how we get the compression that we get.
And also talk about dynamic scenes and DAGs for free viewpoint video.

Course: Voxel DAGs. fUIf Assarsson

This is the epic citadel scene. SVO takes... DAG takes

Visualizing Identical Subtrees

Epic Citadel
Resolution: 128K x 128K x 128K
Number of nodes

SVO: 5.5 billion

DAG: 45 million (0.8%)

... 50 ~100x fewer nodes.

Visualizing Identical Subtrees

Course: Voxel DAGs. /UIf Assarsson

Epic Citadel
Resolution: 128K x 128K x 128K

Identical colors are identical sub
volumes of size 8x 8x 8

Here, we have colored some equal subvolumes of 8-cubed resolution. So the yellow
surfaces are all the same 873-grid. The green use another identical 843 subvolume,

etc.

Visualizing Identical Subtrees
Epic Citadel

Resolution: 128K x 128K x 128K

Identical colors are identical sub
volumes of size 8x 8x 8

v
Course: Voxel DAGs. /UIf Assarsson

As expected, we can easily see that large, axis-aligned surfaces compress very well.
The highlighted areas are described by only four different sub-trees.

Visualizing Identical Subtrees
Epic Citadel

Resolution: 128K x 128K x 128K

Identical colors are identical sub
volumes of size 8x 8x 8

Course: Voxel DAGs. /UIf Assarsson

It is also clear that surfaces that slope in only one dimension compress very well.

Visualizing Identical Subtrees

Epic Citadel
Resolution: 128K x 128K x 128K

Identical colors are identical sub
volumes of size 8x 8x 8

Course: Voxel DAGs. /UIf Assarsson

It is less obvious that surfaces that are non axis-aligned will compress.

Visualizing Identical Subtrees

Epic Citadel
Resolution: 128K x 128K x 128K

Identical colors are identical sub
volumes of size 8x 8x 8

Bl Course: Voxel DAG. /UIF Assarsson

However, zooming in on such a surface, it is fairly easy to see that the roof is
composed of a repeated pattern of just a few nodes.

Visualizing Identical Subtrees

Epic Citadel
Resolution: 128K x 128K x 128K

Identical colors are identical sub
volumes of size 16 x 16 x 16

If we look at subtrees of size 16x16x16, the pattern is less obvious...

10

Visualizing Identical Subtrees

Epic Citadel
Resolution: 128K x 128K x 128K

Identical colors are identical sub
volumes of size 16 x 16 x 16

Course: Voxel DAGs. /UIf Assarsson

oy

But highlighting a only a few nodes again, we can see that non axis-aligned surfaces
indeed will compress well.

11

Visualizing Identical Subtrees

Hairball

Resolution: 8K x 8K x 8K

Number of nodes
SVO: 781 million
DAG: 44 million

(5.6%)

Identical colors ére
identical sub volumes of
sizedx4x4

Course: Voxel DAGs. /UIf Assarsson

Here, we look at an extreme close-up of a hair-ball, and see no obvious patterns...

12

Visualizing Identical Subtrees

Hairball
Resolution: 8K x BK x 8K
Number of nodes

SVO: 781 million

DAG: 44 million
(5.6%)
Identical colors are
identical sub volumes of
sizedx4x4

Node occurrence
370586 37 326
70915 | 10 987
69 974 275 143

Course: Voxel DAGs. /UIf Assarsson

But highlighting a few nodes make it clear that the same subtrees (4x4x4) appear
again, scattered over the geometry.

As an example, you can see that the red nodes in the image actually reappear
370.000 times in the scene.

However, the DAG nodes are larger than SVO nodes, so the compression in number of
bytes is lower than the compression in number of nodes. We will now see why that

is.

13

Encodings of SVO and DAG nodes

= Naive SVO node (32 bytes):
+ -1represents no child.
« Standard SVO node (5 bytes):

+ Internal node: child mask (1 byte (+ possibly 3 padding bytes))
+ index to first child (4 bytes). The siblings are found by being stored adjacently in memory. o
+ Leaf node: 4’ grid = 8 x 8-bit childmasks => 64 bits:
» instead of 2* leaves y

+ Average #bits per non-empty voxel: 511 in reality for our scenes. (I.e., #bits = total_SVO_size / #non_empty_voxels)
* Reason:

A

+ The 4'-grids have only 20%-25% non-empty voxels r - => 25% non-empty voxels => 4 bits/non-empty voxel

(also depends on voxelization, e.g., conservative or not). + overhead for parent levels. (Leaves of 4-grids is still
* The ultimate goal would be ~1 bit / non-empty voxel for SVOs smart, though)

- Pointer-less SVO node (1 byte): m '

+ Just 1-byte childmask

+ A full-tree fixed-order traversal (depth/breadth -first) can define and retrieve child pointers
(and then unpack the SVO to standard SVO nodes.)

+ Cannot be traversed in run time,
+ Cannot be used for DAG nodes because just childmask contains no info of merged subgraphs

+ Average #bits per non-empty voxel: 2.0 — 2.7 in reality for our scenes.
Leaves: On average only 30%-50% non-empty voxels. .-’.-j:
1

Course: Voxel DAGs. fUIf Assarsson

Naive SVO coding: may want to use only for debug purposes.

For typical/standard SVO-node encoding, we often land at 5-6 bits per voxel - since
we use 4-byte indices!

For pointer-less SVO:s and general scenes, we cannot hope for better than 2 bits per
voxel if we use 8-bit leafs and those are only filled by 50% bits of 1’s.

Pointer-less good for storing on disk. But for any efficient real-time traversal, they
need to be unpacked, using for instance standard SVO nodes.

Citadel 32K"3: 12,6567 set voxels per 64-bit leaf =>20%, Average 5.3 bits/voxel
Gallery 4K73: 15,3302 set voxels per 64-bit leaf =>24%, Average 4.27 bits/voxels
Sponza: 273-leaves: 48% set voxels.

Gallery: 273-leaves: 46%,

Citadel: 273-leaves: 42%.

Campus: 2"3-leaves: 33%

14

Encodings of SVO and DAG nodes

+ Naive DAG node (32 bytes/node):
» 8 child indices & 4 bytes.
+ -1 represents no child. E.g.,:

+ Standard DAG node (~22 bytes/node):

« Internal node: Dynamic size.
Child mask (1 byte + 3 padding bytes)
+ only indices to existing children (& 4 bytes):

+ Leafnode: 4 grid = 8 x B-bit childmasks:
» Expected average node size:
+ 1cm + 4.5 child indices & 4 bytes = 22 bytes.
+ Without padding: 19 bytes

+ Pointer-compressed DAG node (~13-17 bytes/node):
» 1-4-byte pointers + info of pointer size (e.g., 2 bits per pointer)
+ Jaspe will provide details in next talk for clever and very good strategy.
» Typical additional compression: ~1.5x £ 0.2
+ Pointer compression not work well for SVOs, since pointers constitute less than ~50% of the SVO data and all of them are unique
+ So, a DAG node is much larger than an SVO node
+ This means the DAG has to rely on reducing the number of nodes drastically

cm + ix-sizes ix ix ix ix

15

Encodings of SVO and DAG nodes

* For further DAG compression, next talk explores:
- Reflection symmetries (Jaspe)

Course: Voxel DAGs. fUIf Assarsson

@

16

Memory Consumption: Crytek Sponza

DAG vs pointer-less (=non-traversable) SVO

LAY

Course: Voxel DAGs. fUIf Assarsson

- The memory consumption of the SVO has increased to 12GB, and the DAG to
476MB. Both have an exponential increase in memory consumption, but the gap
between the pointer-less SVO and the DAG has grown from a factor of 1.5 to a
factor of 26. This shows how the memory consumption of the DAG scales better
than the SVO to higher resolutions. This is even clearer in a log-plot of the same
data.

17

Memory Consumption: Crytek Sponza

— Doubling resolution in x,y,z

When we double the resolution in x,y,z, the resolution is increased by a factor of 8,
but the memory consumption increases less —a factor 4 for SVOs and here a factor
2.6 for DAGs. The reason is that nodes will on average contain ~4 children. So the
expected slope for an SVO is 4 (and it is here, as we can see), but the expected slope
for the DAG is less since we expect less than 4 individual children on average. Next —
crossover point.

- 64/3:4.28 bits per voxel for SVO vs 0.08 for DAG
Slopes:

- DAG: 2.58, 2.59, 2.62, 2.45

- SV0:4.0,4.0,

18

Memory Consumption: Crytek Sponza

— Ccross-over point

KBk ————
64371283 2563 51231K3 2K3

Course: Voxel DAGs. fUIf Assarsson

-At low resolutions the pointer-less SVO is more compact than the DAG, but for this
scene the cross-over point is reached already at the 256 resolution, where the DAG is
smaller, and due to the better scaling the difference increases with the resolution.
The logarithmic plot shows the exponential trends very clearly. So, let’s examine a
few more scenes.

19

Memory Consumption: Epic Citadel

x 15 vs traversable SVO
: .1 GB
i W 08 | - S o O N x 5.7

6431283 2563 5123 1K32K3 4K3 8K3 16K332K364K3 128K3

We will see more statistics in ne

Course: Voxel DAGs. fUIf Assarsson

-The EpicCitadel contains a larger landscape and a citadel of higher geometric
complexity. This scene has details on several scales, and the point of break even is not
reached until the 8K resolution. The scalings looks similar to those in sponza; the DAG
is scaling much better than the pointer-less SVO and we can even fit the 128K
resolution voxel dag, into just below a GB of memory.

20

Memory Consumption: SanMiguel

KB 4;"—!7\7 g

64 1283 2563 5123 1K3 2

Course: Voxel DAGs. fUIf Assarsson

The cross-over point is at 512-cubical grids.
The SanMiguel scene is an indoor scene with lots of fine grain details. The DAG is on

par to the pointer-less SVO at the 512 resolution, but once again the DAG is scaling
superiorly to higher resolutions.

21

Memory Consumption: Hairball

KB , ccanaey o - -
643 1283 2563 5127 1K3 2K3 4K3 BK* 16K 32K 64K3

Course: Voxel DAGs. /UIf Assarsson

- For the really complex hairball scene, the crossover point is at 16K-cubical. This is
expected. DAGs are really good for planar surfaces, and eventually, at high enough
resolutions, all triangles will form larger planar regions.

Put differently:

- The hairball is the last scene and it has a different characteristic. At lower
resolutions, it is not very sparse, and it does not contain many identical volumes.
The DAG and SVO shows the same scaling in the beginning, but the higher cost per
node gives an offset. When we increase the resolution we start to find merging
opportunities in the DAG, the memory consumption starts to scale better, and at
16K it is slightly more compact than the pointer-less SVO.

- Also remember that we are comparing our method to a pointer-less SVO, and that
an SVO representation that can be efficiently raytraced will be significantly more
expensive.

22

SVO — DAG construction

= SVO: Construction algorithm:
Level 0: [0 « For each level, bottom-up:
Level 1: [o=« O + Sort the list of nodes
: + E.g., key = the node’s bytes
L]

Remove duplicates and
Level n-1: ..- cse . update parents’ child indices

Done!
Level n: ... Y ...

Course: Voxel DAGs. /UIf Assarsson

23

SVO — DAG construction

* SVO: Construction algorithm:
Level 0: [0 + For each level, bottom-up:
Level 1: [o= O + Sort the list of nodes
: + E.g., key = the node’s bytes
.

Remove duplicates and
Level n-1: ... ese . update parents’ child indices

Level n: D.D Y] ..D Pone!

Course: Voxel DAGs. fUIf Assarsson

24

SVO — DAG construction

* SVO: Construction algorithm:
Level 0: [0 + For each level, bottom-up:
Level 1: [o= O + Sort the list of nodes
: + E.g., key = the node’s bytes
.

Remove duplicates and
Level n-1: ... ese . update parents’ child indices

Level n: DDD Y] ... Pone!

Course: Voxel DAGs. fUIf Assarsson

25

SVO — DAG construction

+ SVO:
Level 0: .

Level 1: [O] eoe O
L

.
.
Level n-1: ... cse .

.

Construction algorithm:
« For each level, bottom-up:
+ Sort the list of nodes
« E.g., key = the node’s bytes
Remove duplicates and
update parents’ child indices

Done!

Course: Voxel DAGs. fUIf Assarsson

26

SVO — DAG construction

* SVO: Construction algorithm:
Level 0: [- For each level, bottom-up:
| Level 1: [e @ ‘ + Sort the list of nodes

. « E.g., key = the node’s bytes
: Remove duplicates and

Level n-1: ... ese . update parents’ child indices

Done!
Level n: ... eee
Sort O(n log n)
Remove duplicates and | O(n)

update parent pointers

Most nodes (~75%) are at the leaf level

Course: Voxel DAGs. fUIf Assarsson

The complexity.

The GPU can sort 1B elements in ~1second. A 128K”3 scene contains some 10B

voxels.

The expensive part is the voxelization. Not the SVO to DAG conversion.

27

Sparse Voxel DAGs:
From static scenes
to dynamic (moving) scenes
to Free Viewpoint Video

Kampe, Rasmuson, Billeter, Sintorn, Assarsson.
Exploiting Coherence in Time-Varying Voxel Data. 13D
. 0

Course: Voxel DAGs. /

28

Voxel DAGs — dynamic scenes
3D geometry + time dimension

For every time step (=frame) in a dynamic scene, convert the whole voxelized 3D

-
frames
Frame Index) 70§
rames

NN N 2048 gid

Length: 2.9 sec

We do not need to separate static and dynamic geometry. That is automatically
handled to maximum efficiency.

And any coherency between static and dynamic geometry is also automatically
found. Separating would just decrease the number of merging opportunities.

og E:E\DE-’ E?UQD o

29

Time-varying Voxel Grid - construction

DAG top level: eeoe

Root is a vector of one DAG per frame

Frame 0
Frame N 1, Convert each frame to a DAG

2. Merge equal nodes, bottom-up
Frame 1
Done!

30

Time-varying Voxel Grid - construction

DAG top level: eeoe
Root is a vector of one DAG per frame
Frame 0
Frame N 1. Convert each frame to a DAG
2. Merge equal nodes, bottom-up
Frame 1

Done!

Course: Voxel DAGS. JUIr Assarsson

31

Time-varying Voxel Grid - construction

DAG top level:

Frame 0 |

J Frame 1
Di% o [] E"“D

—
L

7 - -0

Root is a vector of one DAG per frame
1. Convert each frame to a DAG
2. Merge equal nodes, bottom-up

Done!

32

Time-varying Voxel Grid - construction

DAG top level: eeoe

Root is a vector of one DAG per frame

Frame 0
Frame N 1, Convert each frame to a DAG

2. Merge equal nodes, bottom-up
Frame 1
Done!

XY Q

|
[
|

33

Time-varying Voxel Grid - construction

DAG top level:

All the way to the top

Root is a vector of one DAG per frame

Frame 0 |

Frame 1

Frame N 1, Convert each frame to a DAG
2. Merge equal nodes, bottom-up

Done!

EE

A
LA A J ml:”:"_l ‘ Next upper level, and so on

Course: Voxel DAGS. JUIr Assarsson

34

Input Color + Depth

Sintel scene

Cameral | Ly N Camera 2

Camera 3 g Al ~ Camera 4

This is a snapshot from the Sintel movie. We capture and voxelize it by rendering rgb-
and depth images from 4 camera positions, and then convert each frame to a DAG.
So then, when we have the whole animated sequence as DAG, we can render this

sequence in real time, from any arbitrary viewpoints and move the virtual camera
around.

Kampe, Rasmuson, Billeter, Sintorn, Assarsson.
Exploiting Coherence in Time-Varying Voxel Data. 13D

Novel Viewpoint 2016,

So, here we see a virtual camera in real time, looking and moving around in the

scene. The real-time rendering is pretty fast and simple.
For the colors, we simply backproject the rgb-camera streams onto the voxels.

36

36

Voxel DAGs — dynamic scenes
3D geometry + time dimension

! Y A WSS ML 1

70 frames
20483 grid
Length: 2.9 sec
@24Hz

il
1.9 MiB

-.1 (=2.3 GiB/hour)
“_“l“ 5.2 Mbits/s

Course: Voxel DAGs. /UIf Assarsson

Well, what’s the point to video record something that we easilly could render in real
time with triangles?

We could perhaps store physics animations of fluids or other complex soft-bodies.
But perhaps more interestingly, we could exchange these camera streams with real
cameras of the physical world. => FVV.

Free viewpoint video means that you can walk around freely inside the movie during
playback.

Want:
1. con
2. Render

'pomt Video

hlcs, 24 ttmesfﬁecond

Course: Voxel DAGs. /UIf Assarsson

Course: Voxel DAGS. fUIF Assarsson

39

Free Viewpoint Video

KINECT

Cameras:

480 frames
5123 grid
20 sec
@24Hz

5.2 MiB
0.9 GiB/hour
2.1 Mbits/s

40

