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Compression performance, why/when and where we get compression.
Good morning everyone and welcome to the course. My name is… I’m a prof. at.. Our
research group started working on voxels and DAGs almost 8 years ago.
I will start with a movie we showed at fast forward Siggraph 2013.
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Fast forward, siggraph 2013. 

I will explain why there is the amount of subgraph-merging opportunities, and why
and how we get the compression that we get. 
And also talk about dynamic scenes and DAGs for free viewpoint video.
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This is the epic citadel scene. SVO takes… DAG takes… so ~100x fewer nodes.

4



Here, we have colored some equal subvolumes of 8-cubed resolution. So the yellow 
surfaces are all the same 8^3-grid. The green use another identical 8^3 subvolume, 
etc.
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As expected, we can easily see that large, axis-aligned surfaces compress very well. 
The highlighted areas are described by only four different sub-trees. 
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It is also clear that surfaces that slope in only one dimension compress very well.
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It is less obvious that surfaces that are non axis-aligned will compress. 
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However, zooming in on such a surface, it is fairly easy to see that the roof is 
composed of a repeated pattern of just a few nodes. 
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If we look at subtrees of size 16x16x16, the pattern is less obvious…
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But highlighting a only a few nodes again, we can see that non axis-aligned surfaces 
indeed will compress well.
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Here, we look at an extreme close-up of a hair-ball, and see no obvious patterns…
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But highlighting a few nodes make it clear that the same subtrees (4x4x4) appear 
again, scattered over the geometry. 
As an example, you can see that the red nodes in the image actually reappear 
370.000 times in the scene. 
However, the DAG nodes are larger than SVO nodes, so the compression in number of 
bytes is lower than the compression in number of nodes. We will now see why that 
is. 
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Naive SVO coding: may want to use only for debug purposes.
For typical/standard SVO-node encoding, we often land at 5-6 bits per voxel - since
we use 4-byte indices!
For pointer-less SVO:s and general scenes, we cannot hope for better than 2 bits per 
voxel if we use 8-bit leafs and those are only filled by 50% bits of 1’s. 

Pointer-less good for storing on disk. But for any efficient real-time traversal, they
need to be unpacked, using for instance standard SVO nodes.

Citadel 32K^3: 12,6567 set voxels per 64-bit leaf => 20%, Average 5.3 bits/voxel
Gallery 4K^3: 15,3302 set voxels per 64-bit leaf => 24%, Average 4.27 bits/voxels
Sponza: 2^3-leaves: 48% set voxels. 
Gallery: 2^3-leaves: 46%, 
Citadel: 2^3-leaves: 42%. 
Campus: 2^3-leaves: 33%
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- - The memory consumption of the SVO has increased to 12GB, and the DAG to 
476MB. Both have an exponential increase in memory consumption, but the gap 
between the pointer-less SVO and the DAG has grown from a factor of 1.5 to a 
factor of 26. This shows how the memory consumption of the DAG scales better 
than the SVO to higher resolutions. This is even clearer in a log-plot of the same 
data.
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When we double the resolution in x,y,z, the resolution is increased by a factor of 8, 
but the memory consumption increases less – a factor 4 for SVOs and here a factor 
2.6 for DAGs. The reason is that nodes will on average contain ~4 children. So the 
expected slope for an SVO is 4 (and it is here, as we can see), but the expected slope
for the DAG is less since we expect less than 4 individual children on average. Next –
crossover point.

- 64^3: 4.28 bits per voxel for SVO vs 0.08 for DAG
Slopes:
- DAG: 2.58, 2.59, 2.62, 2.45
- SVO: 4.0, 4.0, 

18



-At low resolutions the pointer-less SVO is more compact than the DAG, but for this 
scene the cross-over point is reached already at the 256 resolution, where the DAG is 
smaller, and due to the better scaling the difference increases with the resolution. 
The logarithmic plot shows the exponential trends very clearly. So, let’s examine a 
few more scenes. 
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-The EpicCitadel contains a larger landscape and a citadel of higher geometric 
complexity. This scene has details on several scales, and the point of break even is not 
reached until the 8K resolution. The scalings looks similar to those in sponza; the DAG 
is scaling much better than the pointer-less SVO and we can even fit the 128K 
resolution voxel dag, into just below a GB of memory.
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The cross-over point is at 512-cubical grids.
The SanMiguel scene is an indoor scene with lots of fine grain details. The DAG is on 
par to the pointer-less SVO at the 512 resolution, but once again the DAG is scaling
superiorly to higher resolutions.
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- For the really complex hairball scene, the crossover point is at 16K-cubical. This is 
expected. DAGs are really good for planar surfaces, and eventually, at high enough 
resolutions, all triangles will form larger planar regions.

Put differently:
- The hairball is the last scene and it has a different characteristic. At lower 

resolutions, it is not very sparse, and it does not contain many identical volumes. 
The DAG and SVO shows the same scaling in the beginning, but the higher cost per 
node gives an offset. When we increase the resolution we start to find merging 
opportunities in the DAG, the memory consumption starts to scale better, and at 
16K it is slightly more compact than the pointer-less SVO. 

- Also remember that we are comparing our method to a pointer-less SVO, and that 
an SVO representation that can be efficiently raytraced will be significantly more 
expensive.
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The complexity.
The GPU can sort 1B elements in ~1second. A 128K^3 scene contains some 10B 
voxels.
The expensive part is the voxelization. Not the SVO to DAG conversion.
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We do not need to separate static and dynamic geometry. That is automatically
handled to maximum efficiency.
And any coherency between static and dynamic geometry is also automatically
found. Separating would just decrease the number of merging opportunities.
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This is a snapshot from the Sintel movie. We capture and voxelize it by rendering rgb-
and depth images from 4 camera positions, and then convert each frame to a DAG.
So then, when we have the whole animated sequence as DAG, we can render this
sequence in real time, from any arbitrary viewpoints and move the virtual camera
around.
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So, here we see a virtual camera in real time, looking and moving around in the 
scene. The real-time rendering is pretty fast and simple.
For the colors, we simply backproject the rgb-camera streams onto the voxels.
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Well, what’s the point to video record something that we easilly could render in real 
time with triangles?
We could perhaps store physics animations of fluids or other complex soft-bodies.
But perhaps more interestingly, we could exchange these camera streams with real 
cameras of the physical world. => FVV.
Free viewpoint video means that you can walk around freely inside the movie during
playback.
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