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Shadow maps create shadows by first rendering the scene from the viewpoint of the 
light, this results in a shadow map.
Afterwards, each pixel in our main view is reprojected to the light space and 
compared to what we stored in the shadow map.
Points visible by the light are in light, and those not visible by the light are in shadow.
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Shadow mapping presents artifacts due to the quantization of depth information.
Unless very big resolutions are used, artifacts usually occur.
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Scanline based compression [Arvo2004] compresses shadow maps by compressing 
each scanline separately as a series of lines that fall within the depth intervals.
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Each texel in a shadow map represents a ray shot from the light towards the scene.
Normally we save the depth of the first intersection point.
After that intersection, the ray will enter an object.
Any depth that represents a point within that object is a valid depth to store, since we 
will only compare that depth to points outside of it.
This results in a valid depth range, or interval, for that pixel.
Other objects can only be outside of this range.
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Another method we presented at EG this year is MH, which creates a sparse hierarchy 
of intervals to represent the original high resolution depth map.
Groups of 4 intervals are examined, and the larges intersecting set of intervals is 
identified.
A new interval is created that can represent the original intervals at a lower 
resolution, creating a hierarchy.
The redundant intervals are then eliminated, thus sparsifying the hierarchy.
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This method is repeated from the highest resolution until one single interval remains.
Then, the hierarchy is encoded as a quadtree for fast access.
The quadtree does not need to store the interval, it simply stores the midpoint of 
each interval.
Compression in this case is achieved by representing many values as a single one at 
lower resolutions, a sort of hierarchical compression.
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So, the idea of this work is to merge both previous approaches.
We want to create a sparse hierarchical representation of the data and also identify 
redundant parts in that hierarchy that can be represented by a single instance.
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At this point you may wonder why wouldn’t this be straightforward.
The problem is that in DAGs, we usually store 1 or 2 bit values at nodes, so exact 
matches are abundant and easily detected by using a dictionary.
In our case, we want to save full 32 bit values, so exact matches are almost non-
existant.
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So, what we do is this: 
- We create a multiresolution hierarchy quadtree, as explained before.
- Instead of choosing a single value for each node, we keep the original intervals.
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- We can then compare 2 subtrees by trying to intersect each corresponding 
interval. 

- If each interval pair is intersecting, then the intersection represents all values that 
are allowable for both subtrees.
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Finally, we can replace both subtrees by the intersected one.
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Since we cannot rely on a dictionary, we must test subtree pairs to determine if they 
can be merged.
The problem is that there are billions of combinations in high resolution MH 
quadtrees.
Therefore, we need a procedure to reduce the number of tests as much as possible.
We do this by filtering the possible merge pairs based on topology, locality and 
aggregated statistics.
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A typical subtree may contain hundreds of thousands different subtrees, so we 
cannot compare every subtree pair.
In order to speed up merging, we will partition subtrees by topology, so only equal-
topology subtrees will be tested.
We do this by creating a hash code for each inner node that encodes the topology of 
the tree in a bottom-up sweep.
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Once we have the hash table, each collision list contains all subtrees of equal 
topology.
We can therefore test subtree pairs within collision lists.
Some lists will grow very large, especially for small heights were topology types are 
not so many.
We restrict testing to a local neighborhood in the list. This corresponds to spatially 
near features, since subtrees are inserted in a depth-first manner.
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Once we have selected a pair of subtrees to test, as we mentioned, we need to verify 
if each corresponding node interval intersects.
This still is a lot of floating point comparisons, and we want to speed this up.

If I show you these two sets of intervals, you immediately see that they cannot all 
intersect.
The reason is that there is an interval whose minimum is higher than any maximum 
of the other set.
We can quickly reject merges by inspecting the lowest interval minimum and highest 
interval maximum of the sets.
These aggregated statistics can be computed very fast for all subtrees in a single 
bottom-up traversal. We do this at the same time as the bottom-up hash creation.
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This is a small visualization of how the hierarchy looks.
On the left is the original hierarchy, where the lighted pixels denote deeper nodes in 
the tree.
On the right, the same visualization but we mark in red the merged nodes.
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Let’s look at an example of a small PCF kernel of 4 texels.
We can decide which level to sample to make the texels match the pixel size.
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Let’s see an example in a case where we have a view where we need magnification 
for the close objects and minification for the trees in the background *click*.
As we saw, magnification works by regular PCF filtering. *click*.
For minification, stoping at the correct level gives us smooth looking shadows at any 
distance.
In this example the trees where not antialiased, so you can compare what happens 
when you have too small features.
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The end result are very stable antialiased shadows.
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This other example is a more typical use case where there are detailed features, but 
they are smaller in scale.
Again, our method outperforms previous ones.
In this case most time is spent rendering the original shadow map tiles, while 
merging is now around 30% of the total time, which is more reasonable.
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This is an example of a large scale urban scene.
Again, we are able to achieve much higher compression rates than competing 
algorithm. 
This scene is pre-processed in only 43 seconds.
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In some cases, we may want to precompute and compress a set of similar shadow 
maps.
For example, we may have a light moving in a fixed trajectory and want to store 
several SM along the trajectory.
Or an area light, where we may want to store several SM for different points in its 
area to produce soft shadows.
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By using our same approach we begin with a set of shadow maps, which we can think 
of as a cube of texels, each with one depth interval. *click*
So we can do the exact same procedure we have showed, but  with one extra 
dimension, and we will end up with an octree instead of a quadtree.
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This is an example of storing a set of SM for a moving light, where we sample 
different slices over time.
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By storing several SM from an area light and sampling a subset for each pixel, we can 
get soft shadows which have geometrically correct penumbra sizes.
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Augmenting the size of the neighborhood results in diminishing returns. The graphics 
shows that beyond around 1000 neighbors, testing more subtrees does not increase 
compression significantly.
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