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Figure 1: To test and demonstrate our method for editing large sparse voxel geometries, we have implemented an interactive prototype
application with support for interactive editing operations. The left image shows a copy operation in the Epic Citadel scene, voxelized at a
resolution of (128k)3. The statue inside this building contains about 170k voxels. The middle image shows larger scale edits, copying an entire
building (order of 80M voxels). The right images illustrate tools to add and delete voxels, as well as paint voxel color attributes. The bottom
right image uses the San Miguel model, voxelized at (64k)3, where we first solidified, then carved a hole in a column.

Abstract
Voxels are a popular choice to encode complex geometry. Their regularity makes updates easy and enables random retrieval of
values. The main limitation lies in the poor scaling with respect to resolution. Sparse voxel DAGs (Directed Acyclic Graphs)
overcome this hurdle and offer high-resolution representations for real-time rendering but only handle static data. We introduce
a novel data structure to enable interactive modifications of such compressed voxel geometry without requiring de- and
recompression. Besides binary data to encode geometry, it also supports compressed attributes (e.g., color). We illustrate the
usefulness of our representation via an interactive large-scale voxel editor (supporting carving, filling, copying, and painting).

CCS Concepts
• Computing methodologies → Volumetric models;

1. Introduction

Compressed sparse voxel structures have gained popularity as an
alternative representation for highly-detailed geometry. Voxel-based
approaches encode the scene as a high-resolution grid, where cells
(“voxels”) hold information to define the scene. While naively
storing such grids is infeasible for large resolutions, hierarchi-
cal representations can exploit sparsity [Mea82] and similarity
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[KSA13, JMG16, KRB∗16] to achieve significant compression
rates. Kämpe et al. [KSA13] demonstrate (128k)3 resolutions at
less than 1GB, while still enabling real-time rendering of this
compressed form. Originally, such DAG (directed acyclic graph)-
based structures only encoded solid geometry; however, later works
[DKB∗16, DSKA18] extend the methods to include compressed
per-voxel attributes, such as color.

Until now, sparse voxel DAG structures are pre-built in a separate,
often off-line, construction step, which limits their use to static ele-
ments. We introduce a solution to dynamically modify sparse voxel
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DAGs in the compressed domain. It enables interactive geometry
edits, and paves the way to many applications requiring dynamic
changes to a compressed DAG. Furthermore, our data structure is
compatible to existing attribute-compression schemes [DSKA18].
We demonstrate interactive color manipulations as an example.
Specifically, we make the following contributions:

• A method for modifying sparse voxel DAGs in their compressed
form, i.e., without decompression/recompression;
• A novel data structure to enable interactivity and ensure little

impact on compression/rendering/traversal performance;
• A natural recording of changes to enable undo/redo operations

and associated garbage collection to free memory, when needed.

2. Related Work

Voxels are used in many applications to represent complex geometry.
The regularity of voxel structures makes them appealing if opting
for dynamic modifications, as in editing tools [3DC, SVR], as well
as games [Mc, Ast]. Nevertheless, uncompressed voxel structures
grow rapidly in size with increasing resolution.

Compressing voxel volumes is an option for reducing the mem-
ory costs. While several rendering algorithms have been pro-
posed [BRGIG∗14], solutions for fast editing of large volumes
are lacking. Our work focuses on the modification of sparse struc-
tures that can, e.g., arise when converting solid geometries into very
high-resolution voxel data.

Sparse voxel octrees [Mea82] (SVOs) encode sparse volumes
efficiently by employing a hierarchy. Meagher [Mea82] encodes
geometry in an octree, where leafs are either filled or empty, while
inner nodes are either empty or contain at least one pointer to a
non-empty child node on the next level. By only storing non-empty
parts of the structure, SVOs deal very well with sparse data (as
their name indicates). SVOs can be directly traversed without de-
compression and efficiently rendered via ray tracing [LK10], which
made them suitable for many applications, including indirect il-
lumination [CNS∗11], multi-scale editing [SVR] and out-of-core
rendering [CNLE09, CNSE10, GMI08].

Kämpe et al. [KSA13] show that the compression rates of SVOs
can be increased significantly by also exploiting similarities in the ac-
tual geometric data. Their method identifies identical subtrees in an
SVO and removes duplicates by changing all references to point to
a single instance of the subtree. This transforms the octree into a di-
rected acyclic graph (DAG). Using this method, Kämpe et al. encode
volumes with resolutions of up to (128k)3, while remaining compact
(e.g., the structures fit fully into GPU memory) and maintaining real-
time rendering performance. Later work increases compression rates
by exploiting additional similarities [JMG16, JMG17], but we base
our method on the simpler (but still very compact) original sparse
voxel DAGs. Sparse voxel DAGs have found various applications,
including shadows [SKOA14], many-view rendering [KBLE19],
and time-varying geometry [KRB∗16]. In the latter, Kämpe et al.
use DAGs with multiple roots. Following a different root results in
a different geometric representations, while identical data is still
shared. The total compression increases significantly compared to
storing separate DAGs. We use a similar insight to store multiple
states (before and after edits) efficiently.

The original sparse voxel DAGs only encode geometry.
Dado et al. [DKB∗16] and Dolonius et al. [DSKA18] show how
additional information, such as colors and other attributes (e.g.,
normals), can be compressed alongside a sparse voxel DAG. Our
method is compatible with such approaches, and we demonstrate the
use of colors, employing the compression method of Dolonius et al.

A sparse voxel DAG can be built efficiently from a sparse voxel
octree [ABD∗18,SKOA14]. Many methods for building sparse voxel
octrees exist, including out-of-core approaches [BLD13]. Neverthe-
less, while these aim at efficient ground-up builds, we focus on
efficient online modifications of a sparse voxel DAG structure.

3. Method

Modifying uncompressed voxel structures is straight-forward (and
indeed one of its strengths). However, compressed structures, such
as Voxel DAGs, are largely considered static. The reason is that any
node in a DAG may be referenced by multiple parents. Thus, naively
changing an existing node potentially affects many parts of the
scene. To avoid this problem, our method keeps the original structure
intact but attaches additional information to indicate modifications.
These additions are light-weight as they take place directly in the
compressed domain, while maintaining an efficient traversal (and,
thus, rendering) performance. Further, this encoding keeps track of
all modifications, which can then be naturally un- and redone.

To explain our method, we first describe the principle of modify-
ing the geometry in a DAG (Section 3.1) without discussing imple-
mentation details. We then introduce our data structure to achieve
interactive performance (Sec.3.2). Next, we cover several extensions,
including the use of attributes, demonstrated with color manipula-
tions, e.g., for painting applications (Sec.3.3). At all time, geometry
and color data remain compressed but the DAG is augmented with
information in each modification step. A garbage collection is used
to trim this information, when memory is required (Sec.3.5).

3.1. Modifying DAG Geometry

We assume that modifications take place within a bounding volume
(e.g., brush). Independent of the applied operation, we, thus, first
identify the voxel locations that require changes. To do so, our
method traverses the DAG structure in a depth-first manner. If a
node is not affected by the change, we stop the traversal, otherwise,
we descend into the children. During this traversal, it is possible to
descend into nodes that did not exist in the original DAG structure
and will be added and compressed on the fly. An example that
requires a full descent would be a single voxel that is added at the
highest resolution level. If a larger region is filled, an earlier stop
might be possible when an entire subtree is filled.

Once the necessary depth and location for the manipulation is
reached, we create a node representing the newly modified geometry
(following Kämpe et al. [KSA13], DAG leafs are 43 = 64 subvol-
umes encoded in bits of a 64-bit integer). At this point, we need to
integrate the new node into the DAG. There are two cases; there
already exists an identical leaf-subvolume node somewhere in the
DAG, which means that we can use the existing version instead, or
we need to append a new node to the DAG (without invalidating
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Figure 2: Overview of the editing process. (Left) Original voxel data and the corresponding DAG. We wish to fill the region highlighted in red.
(Children are shown in counter-clockwise order, starting top-left.) (Center-left) We traverse the DAG structure and identify the leaf nodes
affected by the modification (highlighted in orange and purple in the voxel data). The purple leaf already exists in the DAG, so we find it and
return a pointer to the existing node. The orange leaf is new, so we append it to the leaf level. (Center-right) We propagate the pointers to the
parent node, and construct it. The DAG does not contain such a node yet, so we create a new one. (Right) We propagate the new pointer to its
parent (the root). Three of the parent’s children are unmodified, and we copy the corresponding values from the old instance. The fourth child
is our modified node. The new node does not exist either, and becomes a new root node that represents the modified volume. The old root is
kept (unless trimmed later) and traversing the old root returns the original voxel data.

existing nodes). In both cases, we obtain a pointer to a node within
the DAG that contains the modified geometry. The pointer is then
passed to the parent. In the special case, where a node ends up empty,
we propagate a special (reserved) pointer value to the parent node.
This instructs the parent to omit the node in its child mask and to
indicate its absence (no pointer needs to be stored). For each parent,
once its children have been processed, we again create a new node
that reflects the changes. Such interior nodes consist of a bit-mask
identifying non-empty children (eight bits) and a set of pointers (one
per non-empty child). As in the previous case, the same two options
exist: the same node already exists, and we use it instead, or we add
the new node to the DAG. Again, either choice results in a pointer
to a node in the DAG with the correctly-modified geometry, which
is then passed again to the parent.

The procedure is repeated until reaching the root of the DAG,
where we create a new root node. It represents the modified DAG,
including the geometric changes. Please note that the trees attached
to the previous root node reflect the previous version of the DAG,
which enables un- and redo operations by storing such previous
roots and starting traversals from them. Section 3.5 will show how
to remove this unnecessary data, if needed. We illustrate the entire
editing process in Figure 2. Listing 1 includes pseudo code for the
recursive editing function. The efficiency of our method hinges on
two operations: finding a node in the DAG and inserting new nodes.
The next section describes how to achieve these tasks efficiently.

3.2. The HashDAG structure

Our data structure, the HashDAG, uses two main components: hash-
ing for efficient finding of nodes and virtual memory to manage
the overall memory usage. The DAG data structure contains many
pointers, which would be impractical to update. We therefore design
the HashDAG such that its data does not need to be moved. We
achieve this through a setup that uses fixed, predetermined memory
addresses. The address space is managed with a standard virtual
memory setup, i.e., where fixed-size pages are mapped to com-

nodeptr edit( editOp, lvl, center, node )
{

if( !editOp.affects_volume_at( center, lvl ) )
return NodeUnchanged;

if( lvl == DAGDepth-2 )
return edit_leaf(editOp, lvl, center, node);

childMask = 0; childPtrs[8] = { EmptyNode, ... };
if( node != EmptyNode )

childMask = get_child_mask( node );
childPtrs = unpack_child_pointers( node );

for( i = 0; i < 8; ++i )
newChild = edit( editOp, lvl+1,

position_of_child( center, lvl, i ),
childPtrs[i] );

if( newChild != NodeUnchanged )
childPtrs[i] = newChild;
if( newChild != EmptyNode )

childMask |= (1<<i); // set bit i to one
else

childMask &= ∼(1<<i); // clear bit i

if( childMask == 0 )
return EmptyNode;

childPtrs = pack_child_pointers( childPtrs );
p = find_node( lvl, childMask, childPtrs );
if( p == NodeNotFound )

p = append_node( lvl, childMask, childPtrs );
return p;

}

Listing 1: Recursive editing function. The editOp defines the
editing operation (i.e., encodes what changes should be made). Its
method, affects_volume_at(), determines if the edit affects a
certain volume, defined by node size at a specific level and position.
Leaf levels are handled separately (edit_leaf(), not shown,
computes a 43 leaf volume and finds/inserts it in the DAG). The key
operations find_node() and append_node() are detailed
further in Section 3.2.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.



V. Careil, M. Billeter & E. Eisemann / Modifying Compressed Voxel Representations

Figure 3: One level of the HashDAG. In the figure, the level’s buck-
ets correspond to rows in the table. The index inside the bucket is
given by the column. The level contains four nodes (colored differ-
ently). Each node starts with the child mask, immediately followed
by the child pointers. The number of child pointers is equal to the
number of set bits in the child mask. In this illustration, we use a 16-
bit address space. Each bucket spans 256 consecutive 16-bit words.
Combining the 8-bit address of a bucket (leftmost column) with the
index (upper and lower bytes, respectively) in the bucket (top row)
creates a virtual address. Nodes are identified by the address of their
child mask. For example, the first node (0101, p0, p1) has address
0x3200, and the third (0100,r0) receives 0x3303.

pact ranges of addresses via an address translation table. Pages are
only allocated when the memory at the corresponding addresses
is needed. The HashDAG has no special requirements regarding
the page size, making it compatible with, e.g., hardware supported
virtual memory/“sparse resources”.

The HashDAG allocates a fixed address space for the whole DAG.
The size of the address space is linked to the size of the pointers
in the DAG structure. In our case, we rely on 32-bit pointers, and
consequently use a 32-bit address space. Note that addressing is
performed on a 32-bit word granularity, meaning that the address
space spans 16GB of memory. Each node occupies a number of
consecutive 32-bit words: a node starts with a word containing the
child mask at the first address (the 8-bit child mask is padded to
32-bits), and is followed by k words containing the child pointers.
Here, k is equal to the number of non-empty children of that node,
reflected by the number of set bits in the child mask.

Each level in the DAG receives a predetermined portion of the
address space. Varying the size per level allows us to allocate less of
the address space close to the root (which contain fewer nodes) and
use more of it for the levels that typically contain a large number of
nodes. By doing so, we maintain a more even distribution of nodes
per amount of address space overall. In our implementation, we
decided to keep these memory regions to sizes of a power of two.
We denote the size of the memory region at level ` as 2N` .

We further subdivide the regions of each level into fixed-size
buckets of size 2M . Hence, a level ` contains 2P buckets, where
P = N`−M. We track the number of used 32-bit bit words for each
bucket in a counter. Nodes are always placed in the bucket at the
index given by a P-bit hash of the node’s contents. The hash is
computed using a standard hash function [App16], taking the child
mask and associated child pointers (each of which is just a 32-bit
value) as input. Figure 3 illustrates the address layout of a level.

When searching for a node during editing (to check for its exis-
tence or to find its address), we compute the hash of the node, and
perform a linear search within the bucket identified by the hash. A

node can be accessed via its virtual address v, computed by combin-
ing the hash, h, and the offset in the bucket i (see Figure 4):

v = levelBaseAddr+h×2P + i.

The base address of the level, levelBaseAddr, is precomputed based
on the selected distribution of the memory regions for the different
levels in address space (i.e, from the N`). If the node is not found,
it is appended to the corresponding bucket. Normally, the node is
simply placed at the word following the final element of the last
node in the bucket (or at index zero if no nodes are present yet).
However, we ensure that nodes do not span across multiple pages:
if a node does not fully fit into the remaining space of the last page
of the bucket, we allocate a new page, and move the node to the
beginning of that page. The remaining words in the old page are set
to zero. The counter of the bucket is incremented by the amount of
potentially skipped words plus the size of the node.

Since nodes cannot span multiple pages, we only need to per-
form one address translation per node during traversal. Similarly,
during editing, the translated address is needed as part of the
get_child_mask() and unpack_child_pointers() op-
erations and could be performed just once for both accesses.

A key property of the HashDAG is that the hashing is only per-
formed when editing the structure. During traversal, however, no
hashes need to be computed, limiting the overhead of the HashDAG
to that arising from the extra indirection due to the virtual memory.

3.3. Attribute encoding

Our method maintains the structure and topology of the DAG, which
keeps it compatible to previous methods that integrate attributes,
such as colors. Attributes are typically stored as a supplementary
array that is compressed independently and each node in the DAG
makes use of its index (which is computed during a depth first traver-
sal) to look up the corresponding attribute. Several of the proposed
attribute compression schemes are relatively efficient when involv-
ing few attributes but can become costly for larger sizes. To avoid
these costs, we split our scene in chunks of a fixed size (correspond-
ing to subtrees of the DAG at a fixed depth, e.g., 10). The attribute
compression can then be applied to each of these subtrees inde-
pendently. Consequently, a local change only requires us to locally
update the corresponding subtree (see Figure 5). The calculation of
node indices is compatible with our geometry-modification method,
as we also rely on a depth-first traversal.

To exemplify the possibility of manipulating attributes, we em-
ployed the color compression method by Dolonius et al. [DSKA18].
The compressed color data is stored for each subtree of fixed depth.
When traversing the DAG, we first find the corresponding color
chunk and then decode the color as in [DSKA18]. When editing, the
affected color chunks are rebuilt entirely: color data from unchanged
voxels in the same subtree is transferred to the new chunk in com-
pressed form (and voxel indices are updated as needed), as well
as colors from new voxels that are added into the color chunk. For
details on the actual compression technique, which relates in parts
to block compression methods such as S3TC/DXT/BCn [BC18], the
interested reader is referred to their original article.
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Figure 4: Editing with the HashDAG structure. The figure illustrates the process at Level N; this is the same level as shown in Figure 3. The
edit updates the structure shown there. Level N receives the child pointers p0,1 and t0 from Level N +1 (c.f. recursive calls in Listing 1). We
construct the child masks by checking the returned pointer values. For each of the three non-empty nodes, we hash the child mask and the
pointers. This identifies the buckets in which the nodes will reside. The first and third nodes (blue) are identical and a linear search will find
them at index 0x00 of the hash table. Combining the bucket’s address (0x32) with the index gives the virtual address of the node, 0x3200.
The second node (orange) is not found in bucket 0x34, so we append it to the first possible location, index 0x02 here. The final virtual
address becomes 0x3402. The virtual addresses are returned to Level N−1, where the process repeats.

Figure 5: We subdivide the scene into chunks that correspond
to subtrees of the geometry DAG at a fixed depth (=1 in this
figure). Each chunk applies the color compression of Dolo-
nius et al. [DSKA18] independently. The compressed color chunks
are stored in a separate SVO. The figure shows the color data un-
compressed for simplicity; we refer to the original publication for
details on the compression.

3.4. Optimizations and implementation details

We noticed that many manipulations lead to locally constant voxel
volumes. A special handling of these cases leads to a significant in-
crease in performance when adding or clearing large solid volumes.
Specifically, during initial loading, we ensure that a node represent-
ing a completely full subtree exists at all levels (this adds at most
one node to each level of the DAG structure), and keep track of its
location. During editing, we perform an additional test that checks
whether or not the modification would completely fill or empty the
node in question. If it is completely filled, we simply return the
pointer of the well-known full-subtree node of the corresponding
level. If it is empty, we already handle the situation efficiently, as
the empty volume is simply recorded by indicating an absent child
node in the parent’s child mask. A similar optimization also works
for solid colors, but varying colors require the generation of the
corresponding compressed color data.

Our implementation supports rudimentary multithreading. We
perform a single-threaded traversal until the color chunk depth. Any
continued traversals become independent jobs that are handed over
to a thread pool of fixed size. For the HashDAG structure, we use a
mutex per bucket. Color updates do not need synchronization, since
each color chunk is being rebuilt by a single job.

3.5. Garbage collection

As indicated in earlier sections, each modification adds new data
to the DAG structure, while the old versions of the DAG structure
remain valid. While this may be useful in some applications, the
recovery memory by removing the old versions may be desirable in
some cases.

We apply a garbage collection method to trim the information.
We start with a list of root nodes that we wish to keep (for example,
the root node representing the state after the latest modification). We
iterate over the nodes and extract a list of unique child pointers to
the next level. We repeat this procedure with the new list, until we
reach the leaf level. By creating the unique list for each level, the
method scales with the number of DAG nodes that we want to keep,
and thus remains relatively efficient.

Next, we iterate over the DAG levels, starting at the leaf level.
We compact each level to only contain the nodes identified in the
previous step, while maintaining a mapping from the original index
to the new index in the compacted list. The mapping is used at the
next higher level to update the child pointers to their new values.

4. Results and Discussion

To illustrate our approach, we produced a prototype, in which users
can load and interactively edit an existing voxel DAG model. Our
implementation performs modifications on the CPU and renders the
DAG structures on the GPU, using CUDA. We ran measurements
on an Intel Core i7-8700K CPU (6 cores with 2× hyperthreading)
with 16GB of DDR4 memory and a NVIDIA GeForce RTX 2080
GPU under Linux.
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Figure 6: Overheads from the virtual memory and the color SVO.
We show the rendering performance in a short predefined fly-through
through each of the scenes, for our custom DAG structure as well as
a standard DAG without virtual memory. The top row shows results
for the Epic Citadel scene, at a (128k)3 resolution. The bottom row
shows the San Miguel scene, at (64k)3. Rendering performance is
on average about 1.5× slower due to the virtual memory, with a
worst case of about 2× slowdown. Resolving colors adds overheads
of similar magnitude. Tracing geometry and resolving colors are
separate passes, the full rendering time is the sum of both. Note that
the irregular tree model in San Miguel is quite expensive to render,
making it more expensive despite the lower resolution.

Figure 6 compares the traversal performance of our HashDAG
structure with the original DAG implementation. Our virtual mem-
ory scheme introduces an overhead of 1.5× to 2× for the raytracing
of the geometry (although the performance already varies greatly for
different scenes). Resolving attributes requires an additional traver-
sal of an SVO to locate the chunk associated with the intersected
node. In case of our implemented solution for colors, it introduces an
overhead of similar magnitude. We believe the raytracing overhead
could be mitigated by using sparse resources [Vk19] - hardware
support for user-controlled virtual memory mappings. However, at
the time of writing, sparse resources are unsupported in CUDA and
such an implementation remains future work.

Our prototype includes several editing tools; copying parts of the
existing voxel structure, adding and removing (carving) voxels in
regions of different shapes, painting colors and a non-optimized
tool for filling hollow spaces (see Figure 1). We added the latter
only for visualization purposes because voxel DAG structures are
often created from traditional meshes resulting in thin shells, as only
the surfaces are voxelized. Filling such shells before carving into
them ended up being useful for visual purposes (Figure 1, bottom
right). To solidify such objects, we perform a flood fill operation
that marches over the voxel grid from the user selected position.

To evaluate the performance of our method, we focus on sim-
ple editing operations and group the edits by the number of voxels
they change. More complex operations (such as copies) carry over-
heads unrelated to the presented method (e.g., traversing the copy’s

(64k)3 - Large (128k)3 - Large

(64k)3 - Small (128k)3 - Small

Small Large

Figure 7: Performance of geometry and color modifications w.r.t.
size of the modification in voxels, using varying numbers of threads.
We present data from two separate editing sequences, both in the
Epic Citadel scene at (64k)3 and (128k)3 resolutions. The first
sequence includes smaller modifications (< 350k voxels in (64k)3

and < 2.5M in (128k)3). The second sequence performs larger
modifications affecting up to 350M voxels in (64k)3 and 3G in
(128k)3, respectively. The images at the bottom show the scenes
after the modifications from the sequences (small edits to the left,
large to the right).

source). Figure 7 shows the performance of modifications of varying
sizes. We include results from two test sequences at two resolutions,
(64k)3 and (128k)3. The two test sequences are repeated for both
resolutions such that sizes of the modifications in world space are
maintained (i.e., the same operation will affect many more voxels in
the higher resolution scene). The first test focuses on small modi-
fications (affecting up to 350k and 2.5M voxels, respectively), the
second on large edits, affecting up to 350M and 3G voxels.

Figure 8 repeats the same tests, albeit for geometry only (i.e.,
the color updates are omitted). Here, the effect of the full-subtree
optimization (Section 3.4) becomes obvious, as the time required
for modifications of increasing sizes scales sublinearly. For large
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(64k)3 - Large (128k)3 - Large

(64k)3 - Small (128k)3 - Small

Figure 8: Performance of geometry-only modifications w.r.t. size of
the modifications in voxels, using varying numbers of threads. The
edit-sequences are identical to those in Figure 7.

edits, our method scales well with additional threads up to a cer-
tain limit (four on our machine), at which point adding additional
threads yields only minor increases in performance. We suspect
that the method becomes memory bound at that point. For small
edits, multithreading helps little, as the edits are smaller than the
subtrees we parallelize over (and any small gains are likely offset
by additional overheads related to the multithreading).

The combination of geometry and color modification is more
costly than geometry-only edits. For color edits, we also observe
a much larger variation in performance. This is a consequence of
varying workload. When adding a new voxel in empty space with
no pre-existing surrounding geometry, the new color chunk only
contains the color of the added voxel. However, if the voxel is added
in the vicinity of other geometry, building the color chunk involves
transferring existing color data from the surrounding geometry and
adding the new colors as well.

Figure 9 displays results from a sequence of copy-operations.
The goal of this tool is to emulate sparse and highly irregular edit
operations (in itself it is not intended to be a very efficient imple-
mentation of a copy tool). The copy operations are implemented in
two phases. First, we create a template by decompressing the source
volume. Second, we apply our method, using the template as a guide
with which voxels are modified or left as-is (empty voxels in the
source are left as is). We only measure performance for the second
phase. For instance, the full- and empty-subtree optimizations never
apply, as we do not store hierarchical information in the template.

(64k)3 (128k)3

Figure 9: Performance of copy operations with different source
volume (“template”) sizes (top row). In contrast to the modifications
from Figure 7 that add solid volumes, the copy operations operate
on very sparse (but irregular) templates (bottom row). Thus, very
few voxels actually change, and most of the time is spent on evaluat-
ing the template. The copies become entirely CPU bound. (Right)
Together the operations construct the tower to the right.

Note that the source volume’s colors are decompressed in phase
one as well. We do not optimize the copies by transferring already
compressed color data, again with the goal of demonstrating the effi-
cient manipulation, not an efficient tool. For variants on the editing
operations and additional tests, we refer the interested reader to the
supplementary material.

Both page size and the number of buckets per HashDAG level
affect performance. By default, we use a page size of 512 together
with 216 buckets on lower levels (≥ 10) of the DAG. Levels close to
the root need fewer buckets (we use 1024), which allows us to reduce
memory demands. In Figure 10, we show performance with respect
to page size and bucket count. In general, increasing either page size
or bucket count improves performance, but comes at the cost of a
higher memory overhead. The memory overhead stems from allo-
cated but only partially filled pages. A larger page size increases the
unused space for each partially filled page, and a larger bucket count
increases the number of partially filled pages. The exact memory
overhead varies over time. However, immediately after loading the
HashDAG structure (Epic Citadel at (64k)3, weighing in at 380MB
of data), we observed memory overheads of approx. 105MB (128
word page size), 260MB (256 words) and 550MB (512), using the
default bucket count of 216. Tests with increasing bucket counts
use a page size of 128, as to conserve memory and enable large
bucket counts. Overheads are approx. 105MB (216 buckets), 480MB
(218) and 1165MB (220). Additional memory overheads from page
padding to avoid placing nodes in multiple pages are negligible in
comparison (. 20MB for (128k)3 with 216 buckets and page size
128, which is the worst case for the page padding in our set of tests).

The quality of hash functions is also critical to the performance
of the HashDAG. Uneven distribution of nodes across the buckets
would quickly lead to problems, first negatively impacting perfor-
mance, and ultimately filling up some buckets completely, prevent-
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Figure 10: Performance for different page sizes and bucket counts
(geometry only, for the large edits sequence from Figure 7). Page
size and bucket count are two of the main variables that control the
performance of the HashDAG. We show both unthreaded (left figure
of each pair) and threaded (right figures) performance. Performance
increases with larger page sizes, but this also results in a larger
unused memory overhead from partially filled pages. Increasing the
number of buckets has a similar impact (the test was performed with
page size equal to 128).

Figure 11: Memory use over the large edits sequence (Figure 7)
for the Epic Citadel scene at (64k)3. (Left) Memory usage by the
geometry. The graph includes total memory usage with and without
garbage collection (GC), as well as performing partial garbage
collection of levels zero to the specified number. (Right) Memory
usage for color data in the same sequence. We show usage both with
and without keeping historical data for undo/redo support.

ing further nodes from being added there. For interior nodes, we rely
on the MurmurHash3 [App16] function. For leaf nodes, we simply
use the bit mixing step of the MurmurHash3. For high levels, e.g.
≤ 5, many buckets are empty (and non-empty buckets contain on
average very few nodes, typically in single digits). For lower levels
of the HashDAG, we have always observed a normal distribution of
the node counts per bucket. For example, at (64k)3 with 216 buckets,
we have observed the following: buckets in level 12 (the level with
the most nodes in this instance) contain on average approx. 600
32-bit words of data (∼120 nodes), with a standard deviation of 60
words. The smallest bucket has 327 words, and the largest 903 - that
is less than half of the maximum bucket size that we have reserved
in this configuration (2048 words per bucket).

The reserved bucket size is a hard upper limit: we cannot change
the size of the buckets’ reserved address space at runtime. It is
therefore necessary to ensure that the reserved space is large enough
to enable future edits (up until a garbage collection step clears
unused nodes). For very large data sets (� (128k)3) or for very
large amounts of changes, it is possible to use a full 32-bit address
space per level, or even switch to a larger address space (and thus
larger pointers), in order to ensure that there is sufficient space
available in each bucket.

As indicated in the description of our method, old states of the
structure remain valid and accessible via alternate root nodes (we
optionally keep historical color data as well). In Figure 11, we
show the memory usage over time, with an increasing number of
changes (represented by the cumulative number of voxels changed
so far). Additionally, we show the minimum size of the data, as
if the garbage collection method were run after each modification.
Memory usage still grows, which is to be expected, as new geome-
try is added with each modification. Historical color data, needed
to support undo/redo operations, is relatively expensive. A limi-
tation of our current implementation prevents us from freeing up
the initial color data (≈1.2GB), compressed using the method of
Dolonius et al. [DSKA18], even as parts of it are replaced with new
color chunks generated on the fly.

The garbage collection implementation is currently unoptimized,
and doing a garbage collection in the Epic Citadel scene at (64k)3

takes 25 seconds, of which 18 seconds are spent on the lower levels
(≥ 12). The performance can certainly be improved, and we have
identified significant overheads related to our usage patterns of
standard containers (mainly std::unordered_{set,map}).

Our implementation suffers from other overheads that we have
not presently addressed, and that are unrelated to our method. For
example, transferring modified data from the CPU to the GPU for
rendering is currently very expensive (order of tens of milliseconds),
as it is implemented with a large number of small cudaMemcpy
operations. A better approach would be to collect all small changes
resulting from a single modification into a single buffer, transfer it,
and use a CUDA kernel to distribute the small modifications to the
GPU’s copy of the data. However, this remains future work.

It is noteworthy that our solution requires only compute time in
the order of milliseconds for scenes with 1015 voxels and edits of
the size of several million voxels, including updates to an additional
attribute in the form of color. We invite the reader to watch the
accompanying video to experience an interactive editing session.

5. Conclusion and Future Work

Our solution enables interactive editing of an unprecedented scale.
We efficiently modify very high resolution compressed sparse voxel
structures, while avoiding de- and recompression cycles. This pos-
sibility is enabled via our HashDAG, a compressed structure that
can be modified on the fly and is relatively easy to implement. Our
prototype editor allows users to perform modifications to existing
voxel structures at many different scales interactively on commodity
hardware, while even keeping track of changes at a low additional
memory cost. It maintains the traversal mechanism and access pos-
sibilities of existing hierarchical voxel grids, which makes it easy
to integrate the solution in other applications, while offering ad-
ditional compression and modification capabilities. One example
could be a large-scale procedural-world generation, inspired by the
work of Peytavie et al. [PGMG09], that allows for directly influenc-
ing the high-resolution terrains. The possibility of testing visibility
efficiently in a voxel grid could also make it interesting to use the
editor for performance-sensitive scene design [ED07].
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