
• The first part then is going to be presented by me.
• In this part we will provide an overview of techniques that have been, and still are, 

used in real-time shading.
• The main focus will be on clustered shading, as this is the most advanced and 

efficient technique today.
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• So. While I think that you, being a quite advanced audience, have fairly concrete 
ideas on what many lights can be used for.

• I’ll give some illustration as to things that I keep in the back of my head at times 
like these.

• To the right here we see an image generated using Photon Splatting to visualize 
the results of global light transport.

• With enough lights, these kind of techniques become possible.
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• More artistic renderings.
• This scene from Need For Speed: The Run, contains around 2600 lights. 
• In movies (animated and otherwise), lots of lights are used to achieve a particular 

aesthetic. 
• This is increasingly going to be the case for games too.
• A benefit to using lights to represent scene illumination, as opposed to baking, is 

that dynamic geometry is affected
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• In games there are a practically limitless number of things that could emit light, 
• if we had an efficient way to compute their contributions. 
• It’s safe to say that current games have not exhausted the possibilities.
• In the starcraft example, there is apparently only a single light <click>.
• However all the muzzle flashes are only additive billboards.
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• Our historical and architectural re-cap starts with traditional forward shading, 
which was predominant until not so long ago. 

• And still is in the mobile space.
• Next we look at deferred shading, which was the first widespread technique to 

bring many lights to games.
• Then we will discuss tiled deferred shading which has seen adoption in many 

modern high-end games.
• More recently Clustered shading further improves efficiency and scalability over 

tiled shading.
• We will also discuss forward shading, using both clustered and tiled shading…
• which allows the use of transparency and MSAA, while retaining much of the 

gooodness with deferred techniques.

5



• The algorithms we are going to talk about target thousands of lights in real time, 
• The lights have a limited range, with some falloff which goes to 0 at the boundary.
• This means that lights are not physical, but this is the normal procedure in games.
• We also do not consider shadows, which is covered later in the course.
• There is no pre-computation so all geometry and lights are allowed to change 

freely from frame to frame.
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• Despite the title of this course, it is not actually about shading at all!
• This is a name we have inherited from forward shading / deferred shading etc.
• In reality the course is about the above question,
• That is, working out which lights affect what pieces of geometry.
• We call this ‘light assignment’, but is also know as ‘light culling’.
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• The traditional method for real-time shading is called forward shading and used to 
be the only method during the first decade, or so, of consumer GPUs.
• It is still dominant on mobile hardware.
• In this technique, there is only a single pass over the geometry drawing into a frame 
buffer accumulating the final image.
• Geometry is rasterized, shading is performed and the frame buffer is updated.
• Shading is performed in the fragment shaders.
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• Thus, we need to round up the set of relevant lights before each draw call.
• and assign lights per chunk/batch of primitives.
• To minimize number of lights, we want to make sure a batch is small, 

geometrically.
• But to draw fast, keep the GPU busy and avoid API overhear, we want large 

batches.
• And don’t care so much about geometric shape.
• This is a fundamental conflict, where the best we can manage is a compromise. 

But it is a difficult one to strike.
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• Now, this conflict runs deeper than simply batch size.
• The basic problem is that we have to assign lights based on the size of geometry 

chunks.
• Therefore, on the one hand, we might have a situation with a few large objects, 

and many small lights
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• This leads to lots of wasted effort in shading lights that only affect a portion of the 
geometry.
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• On the other hand, we may have many small objects.
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• And a few large lights, <click>
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• in which case we will spend a lot of effort to individually discover that they are 
affected by the same lights.  
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• So the conflict runs deeper than just batch size…<click>
• And of course, in the same scene we might have both houses and rabbits, which 

means it is difficult or impossible to ensure a good performance balance.
• Note that the large object could be a single triangle, and in general triangle size 

and varying light density makes this a very difficult problem to solve well.
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• To summarize, the main good thing about traditional forward shading is that
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• Everything can be done in a single pass with a single frame buffer, just storing the 
final color

• This enables supporting transparency and MSAA without much ado.
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• If there are not many lights, this is a simple and high-performing approach.
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• And it is trivial to change shader for each draw call, so custom shaders is easy.
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• On the other hand, the technique suffers from overdraw which means that parts of 
the scene may be shaded only to be drawn over later.
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• Managing shaders can be a challenge, at least it used to be, as each shader must 
support all permutations of lights.

• This can push up register use, at the very least.
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• Finally, we have that problem of assigning lights at the right granularity which 
makes an efficient implementation difficult.
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• I want to point out that none of the problems are necessarily fundamental, 
• But they are important considerations,
• and have, at least historically, been important obstacles.
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• Traditional deferred shading was introduced in its modern form with G-Buffers in 
1990.

• Although the term ‘deferred shading’ was coined later.
• Started becoming mainstream  in games around 2005.
• The basic goal is to solve both the overdraw problem and light assignment 

problem by decoupling geometry from shading.
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• The key idea is to defer the shading to its own pass.
• Such that in the first pass, geometry attributes are just sampled, and stored in G-

Buffers
• And then a separate shading pass is performed, which is thus independent of 

geometric complexity, and indeed representation.
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• So the geometry pass populates the G-Buffers with sampled geometry attributes.
• These are all the attributes that can change per pixel, and in addition a material ID 

can be used.
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• Next we draw the bounding volumes of the lights, as polygon geometry to the 
screen.

• In the fragment shader of these we compute the shading.
• Which is then blended into the frame buffer.
• This is done independently for each light.
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• Here is a somewhat simplified light shader.
• So this is a fragment shader that is used when drawing a light.

• It is thusly executed once for each pixel covered by the light bounding sphere.
• The shader has as uniform parameters the light attributes, position etc, these are 
the same for each fragment.
• First all attributes are fetched from the G-Buffers.

• Note that the screen space coordinate of the fragment is in 
gl_FragCoord.xy

• Then shading is computed using these and the uniform 

attributes of the light.

• And output to the color of the pixel.
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• The large advantages are
• Trivial light management, you just cull and draw the light bounds,
• And light shaders only need to support one light type.
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• The large advantages are
• Efficiency is very high, in that only samples that are actually affected by lights need 

to be shaded.
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• There is no overdraw, and only a single geometry pass.
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• Also, as lights are processed sequentially shadow maps storage can be reused
between lights
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• On the down side,
• Transparency is not readily supported
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• On the down side,
• We get very large frame buffers, especially with MSAA
• And because we need higher precision for light accumulation.

43



• On the down side,
• It is more difficult to do custom shaders for certain geometry.
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• And most problematically, high memory bandwidth requirements,
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• This last problem brings us to the topic of modern shading techniques, so we’ll 
look into this in some more detail.
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• The modern approaches to real-time shading with many lights all take their in the 
following 2 observations

• First, GPU Compute Capacity is greater than the memory bandwidth, and 
grows faster .

• Second, the GPU general purpose programming models and power of these 
cores has improved tremendously over the last years.

• This leads to the conclusion that we ought to explore more clever alternatives to 
rasterization based techniques, such as deferred shading, because they are 
bandwidth intensive.

• These observations have much broader impact as because of how GPUs were 
designed not long ago our community has spent a lot of effort developing 
algorithms that map well to triangle rasterization, even when this has been less 
than intuitive. To do so was simply the only path to real-time performance, as 
evidenced by the many examples, and I’m sure you can think of several of your 
own.

• Today this is not the case, with indirect drawing and programmable shader cores, 
we can, and must, revisit the same problems with a fresh approach.
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• To illustrate this process, this graph shows the relative performance trends of intel 
enthusiast level CPUs and NVIDIA GPUs.

• The green line also plots the memory bandwidth of GPUs,
• As this is a logarithmic plot, we see a fairly clear exponential growth in all three.

48



• However, note the great difference in exponent!
• This means that compute capacity is continually outpacing memory bandwidth, 
• Any algorithm that is bottle necked by bandwidth will scale along this line.
• Whereas a compute bound algorithms will scale much, much, better.
• So we need to be mindful of this widening gap.
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• Currently the gap is a span of some 10 to 20 floating point operations that can, or 
must be, performed for each byte of data loaded to reach peak performance.

• So if we load a single float, we need to do about 40 to 80 operations locally before 
fetching another…

• Of course texture caches and constant registers help a lot, so it is never quite that 
simple…

• …but the trend is clear and shows no sign of slacking off.
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• This brings us to the first of the modern techniques that has been developed in 
this new, bandwidth constrained and compute oriented, landscape.

• Collectively called Tiled Shading, it covers both deferred and forward variants, 
• The forward variant has been re-branded Forward+ by AMD, which obscures its 

nature.
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• To motivate tiled shading, we will look at why traditional deferred shading is 
bandwidth bound (or will be…)

• As we are now drawing the lights, in the shading pass, we have overdraw when 
many lights overlap the same pixel.

• Schematically deferred shading looks like this, we iterate over each light, 
• and then in parallel, by drawing the bounding volume, over all the fragments.
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• The problem is from the fact that the innermost loop is over the pixels,
• This which requires repeated reading, and writing of the G-Buffers and frame buffer.
•So it is pretty clear that we need to get this out of the inner loop somehow, 
especially since G-buffers contain lots of data.
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• So we want to re-arrange this loop to make the innermost loop iterate over the 
lights instead.

• Then we can hoist the G-Buffer read to the outer loop, only reading a single 
time.<click>

• Then we get this nice compute oriented loop.
• And finally a single write.
• This would effectively eliminate the bandwidth problem.
• So how do we go about this in practice?
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•We now need to access all the relevant lights for each pixel sequentially.
•Just using a global list of lights is of course terribly inefficient.
•At the other end of the spectrum, creating lists of lights for each pixel individually is 
both slow and requires lots of storage.
•Tiled shading strikes a balance, where we create lists for tiles of pixels.
•The list must be conservative, storing all lights that may affect any sample within the 
tile.
•So we trade some compute performance for bandwidth, 
•which as we have seen is a pretty good gambit on modern GPUs.
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• We will be using this example scene to illustrate how tiled and clustered shading 
works.

• The scene is the usual Crytek Sponza scene, but with the top three quarters lifted 
off, to let us get a better view.

• I’ve added six lights of different colours, represented as spheres.
• To make the view more interesting, I’ve also added a tree.
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• The same view in outline mode, to make it more clear.
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This is the viewpoint that will be used to demonstrate the algorithms, the yellow 
camera is looking through the tree towards the lion head on the wall.
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• Shifting to that point of view.
• We see that there is a tree near the camera and then we’re looking through the 6 

lights to the wall in the background.
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• With this I will summarize the tiled shading algorithm.
• Tiled shading can be implemented using either deferred of forward shading 

techniques, or a mix. 
• Note that AMD insists on calling “Tiled Forward Shading”, “Forward+”, it is 

however identical.
• The algorithm is conceptually very simple, and also quite easy to implement, at 

least in the simplest form.
• Performance can be very good, given the right circumstances.
• And fundamentally it is a 2D algorithm (we’ll come back to this).
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• The screen is divided into tiles, each covering say 32 by 32 pixels.
• Each tile contains a single list of all the lights that might influence any of the pixels 

inside.
• Note that this list is shared between the pixels, so overhead for list maintenance 

and fetching is low. 
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• To construct the lists, we might do as follows.
• For each light, establish the screen space bounding box, illustrated for the green 

light.
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Then add the index of the light to all of the overlapped tiles.
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Then repeat this process for all remaining lights.
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• The illustration only shows the counts, so you need to imagine the lists being built 
as well.

• In practice we’d also do a conservative per-tile min/max depth test, to cull away 
lights occupying empty space.
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• Tiles in 1D, from side
• View Frustum
• 4 subdivisions
• Redline is geometry
• Min and max depth per tile
• Light range, rejected, completely hidden
• Another rejected, completely in front
• Rejected in one tile, not others
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• After we have processed all the lights, we end up with a 2D grid such as this
• Each cell stores an offset and count that represent a range in a global buffer.
• This range contains a list of light indices indicating all the lights that the may affect 

the samples in the tile.
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• The good things then is that we have solved the bandwith problem
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• Light assignment is still quite simple, just a 2D operation
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• Performance can be very high
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• The technique is also very flexible, which means that it is very easy to switch 
between deferred and forward shading, 

• Or indeed combine, using deferred for opaque and forward for transparent.
• MSAA is thus trivial if forward shading is used.
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• On the down side, we do get back the issue of having all light types in one shader
• Although this is less of an issue on modern hardware it does impact register use
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• We are also now randomly accessing shadow maps, and cannot reuse storage.
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• Finally, the performance of the technique is strongly view dependent
• Which means run time performance is not readily predictable from scene 

parameters.
• We’ll look into this problem in some detail next…
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• Here’s that view again…
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• And here are the tiles, pulled from our implementation…

79



• Switching to the overhead view, we see how they extend from the tree over to the 
background geometry.
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• Toggling on the light geometry, we see that there is a lot of overlap…
• …even in the empty space behind the tree.
• We now should be able to start seeing the shape of the problem with 2D tiles in a 

3D world.
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We’ll now take a closer look at a single tile, in order to highlight the problem.
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• As we can see, there is a small number of samples from the tree
• And the rest, the lion share of the pixels are in the background.
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* In 3D the tile looks like this…
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• The tile extends from the tree through the visible scene to the wall.
• This one troublesome tile intersects all 6 lights in our simple test scene.
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• While actually some of the samples, from the tree, are affected zero of these 
lights.
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• And the rest, would only need two of the lights.
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• So as we have shown, there is a fairly fundamental problem with tiled shading.
• The basic problem stems from that we are making the intersection between lights 

and geometry samples, both of which are 3D entities, in a 2D screen space.
• The main practical issue with this is that the resulting light assignment is highly 

view dependent. This means that we cannot author scenes with any strong 
guarantee on performance, as a given view of the scene may have a significantly 
higher screen space light density than average. 

• For example, we’d like to be able to construct a scene with, say, maximum 4 lights 
affecting any part of the scene. In this case, we would like shading cost to be 
proportional to this, and stable, given different view points. Unfortunately, no such 
correlation exists for tiled shading.

• In other words shading times are unpredictable, which is a major problem for a 
real time application.
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• So how do we solve this?
• This is the basic question for our clustered shading paper.
• A fairly obvious solution, given what has been said so far, is to use 3D tiles of some 

sort.
• It is less obvious what particular kind of subdivisions to use, and whether this will 

actually improve efficiency.
• Another question we explore in the paper is to tile in yet higher dimensions, based 

on normal direction as well.
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Compare the tiles shown here…
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• …with the view space cluster AABBs shown here.
• Along the top edge of the screen, it is easy to see that the clusters and tiles are 

very similar, where the depth within each tile is shallow.
• In the middle, where the tree is, things are more interesting, as several layers of 

depth are visible.
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Going to the overhead view again.
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Comparing the tiles…
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• …to the clusters, shows that the clusters approximate the visible geometry a lot 
better.

• This means that the intersection with the light volumes ought to also be more 
precise.
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• Going back to the single tile example, but with clusters.
• We see that now there is a little flock of them instead of just one tile.
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* From the overhead view again…
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We see that none of the lights overlap the clusters that are on the tree in the fore 
ground.
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• And in the background, only the volumes of the two required lights intersect.
• Clearly clusters has a good potential for improving efficiency, 
• …we’ll now need to talk about how they can be implemented.
• And whether this translates to improved performance.
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• This is a high level version of the clustered shading algorithm
• I’ve grayed out parts that are identical to tiled shading.
• Cluster assignment means to identify what cluster each sample belongs to, this is a 

simple mapping.
• Then we need to work out which of the clusters are represented by these samples, 

and
• Finally we assign lights to these clusters, ensuring we are not wasting storage and 

work assigning lights to empty clusters.
• Note that Emil will be presenting a rather different approach to implementing the 

algorithm, which leaves out and replaces the first two steps.
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• Cluster assignments is a simple mapping from sample coordinate, to an integer 
tuple i,j,k

• i and j are simply the tile coordinates, which can be derived by dividing 
gl_FragCoord.xy by the tile size.

• k is a logarithmic function of the view space Z of the sample, not simply the 
logarithm, for the exact equation see the paper.

• We use this subdivision as it creates self similar clusters that are as cube like as 
possible. This makes them better suited for culling. The logarithmic subdivisions 
also means that as clusters become larger further away, we get a kind of LOD 
behaviour and do not end up with insane numbers of clusters, for a wide range of 
view parameters.
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• Finding the unique clusters is a full screen pass, which simply constructs the cluster 
key for each sample.

• And sets the corresponding cell in a 3D grid to 1. This grid is non-regular 
subdivision of the view volume.
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• We then compact the grid into the list of non-zero elements.
• This can be implemented through a parallel perfix sum.
• Which is a very quick process, for the million elements or so needed.

• Taking a fraction of a millisecond.
• This leaves us with a list of clusters which needs lights assigned to them.
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• When pushing the limit on number of lights, a hierarchy over lights makes sense.
• We use a BVH with a branching factor of 32, which is rebuilt each frame. 
• When not so many lights are used, there are many other approaches which may be 

better. Again Emil will show a rather different approach later on.
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• The shading pass then is virtually identical to tiled shading.
• The only difference is how to calculate the index into the light grid.
• So we clearly have the same benefits in memory bandwidth.
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• It’s simple to support transparent geometry with tiled forward shading.

• For example by finding the min and max Z values, or just extending tiles to 
the near plane.

• However…
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• The result of transparent geometry covering the view is effectively the loss of the
depth range optimization

• which can be a very bad thing™.

• Again, the biggest issue here is that it is view dependent, and so will only be 
possible to determine at run time

• and, as we all know, this kind of problem usually starts showing up five 
minutes after we shipped a build to the publisher.
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• Clustered Shading does not suffer from this problem, as each cluster represents a 
fixed section of 3D space.

• The only problem we face is trying to determine what clusters are need such that 
we can assign lights to them.

• This can be done by rendering a pre-pass with the transparent geometry.
• This can be performed after a regular G-buffer or pre-z pass, with color and depth 

writes turned off, and sets the used clusters to one as a side effect in the fragment 
shader.

• The algorithm is otherwise as before.
• Note that clustered shading provides an efficient way to solve the light assignment 

problem for any transparency technique, not just good old order dependent 
transparency.
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• Here’s an example where the view dependence is quite evident,
• Going from an overhead view of the car, to looking through the window.
• We see that the cost for tiled forward increases significantly.
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• The performance for the top down view is pretty similar.

• But for clustered shading the increase is only about 50%

• Despite shading 1.8 times the number of samples .
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