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Figure 1: Left: single frame from 240Hz short-exposure video and a simulated long exposure at 30Hz by averaging 8 frames. Middle: Using
the 240Hz input, our method enables mixing a long exposure in the periphery with a short exposure for the details on the pendulum. Via user
annotations in the video, different shutter functions can be defined (top right). Annotations and shutter functions can be keyframed over time.
Based on the annotations, our method defines an interpolated shutter function for each pixel (bottom right).

Abstract
A camera’s shutter controls the incoming light that is reaching the camera sensor. Different shutters lead to wildly different
results, and are often used as a tool in movies for artistic purpose, e.g., they can indirectly control the effect of motion blur.
However, a physical camera is limited to a single shutter setting at any given moment. ShutterApp enables users to define
spatio-temporally-varying virtual shutters that go beyond the options available in real-world camera systems. A user provides a
sparse set of annotations that define shutter functions at selected locations in key frames. From this input, our solution defines
shutter functions for each pixel of the video sequence using a suitable interpolation technique, which are then employed to
derive the output video. Our solution performs in real-time on commodity hardware. Hereby, users can explore different options
interactively, leading to a new level of expressiveness without having to rely on specialized hardware or laborious editing.

CCS Concepts
• Computing methodologies → Computational photography; • Human-centered computing → Interaction techniques;

1. Introduction

In photography, the shutter controls when incoming light reaches
the image sensor. Together with sensor sensitivity (ISO) and lens
opening (aperture), the shutter speed defines the image exposure. In
the first cameras, the shutter was a simple mechanic device manually
moved in front of the lenses. Later, shutter devices with different
shapes were created, from rotary-discs to blinds and diaphragms.
Nowadays, most digital cameras implement an electronic shutter,
which simply blocks or lets photons pass to an active sensor element.

In cinematography, many directors still use rotary-disc shutter
devices for creative choices, typically turning synchronously to the
1/24th of a second frame time. The exposure of a frame is then
controlled by an angular cut on the rotary-disc, while its spinning
speed controls the video framerate. The ratio between the open and

closed angles influences how sharp or smooth the scene motion is
registered. A common practice is to use a 180◦ angle cutout, which is
typically perceived as a natural motion blur by the audience [Hos18].
A faster shutter (smaller open angle) leads to crisp content and
sharp motion. A good example is the movie Saving Private Ryan,
which uses a 45◦ shutter to convey a frightening ambiance [Lei19].
Smaller angles mimic the effect of newsreels. Slower shutters (large
open angle) result in motion blur, often used to give a sense of
fast motion. Longer exposure can also smooth perceived motion, as
used by David O. Russell’s in The Fighter to subtly correct jittery
movements [Des11]. Finally, ramping shutter speeds contributed to
the energetic atmosphere of Mad Max: Fury Road [Pau16].

While controlling the shutter has been established as a useful mea-
sure to influence the perception of a video sequence and to enable
different visual styles, the available options are rather limited. Even
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mixing different motion patterns on the same take requires multi-
ple cameras and compositing techniques. Our solution addresses
this topic and we provide a novel technique to virtually simulate
and combine different shutters in space and time. Unlike previous
work, we let artists define spatio-temporally varying virtual shutters
in a postprocess using a simple user interface. All results are pre-
sented in real time, which supports the shutter design process. A
key advantage of our solution is that only sparse spatial and tem-
poral annotations are needed, which then define varying per-pixel
shutter functions for the entire video sequence. We demonstrate the
reproduction of common real-world shutters and illustrate various
options for artistic choices. In this context, we made the following
technical contributions:

• an efficient shutter interpolation procedure;
• a technique to extend sparse shutter definitions; and
• a real-time interface for shutter design and compositing.

2. Related Work

The impact of shutter functions depends greatly on the motion in the
captured scene, which can be spatially varying. When combining
sharp and blurred objects in the scene, it is natural to consider
matting to define target areas and to composite shots from different
cameras. While recent approaches (e.g. [OLXK18,CGHD19,LL18])
can segment the masks, the process is still costly and challenging, as
motion blur trails will jut out of the masks. Because of this, a single-
frame motion blur requires inpainting to fill in the partially visible
background underneath the motion trails [LSE19]. Consequently,
such spatial mixing is difficult to obtain for real-world footage.

Glassner [Gla99] investigated the behavior of different shut-
ter shapes on synthetic scenes, including a virtually-simulated
“Slit Scan” shutter used in the iconic stargate scene from Stanley
Kubrick’s 2001: A Space Odyssey [Beh15]. The slit scan effect
is analogous to nowadays electronic camera sensor: the image is
composed by partial sensor scans. The scan occurs line by line and
in fractions of a second, i.e., while the sensor is exposed to light
at a given shutter speed. If the speed is not as fast as the moving
objects in the scene, the rolling-shutter effect is observed. While
such effect is occasionally applied for artistic reasons, for many
applications it is not desirable and spatial and angular warpings have
been proposed to correct for image distortions [NFM07].

When the scene has little motion, the effects of varying shut-
ters can be subtle, and their perception varies with different view-
ers’ preferences and expertise [AWA∗16]. Nevertheless, it has been
shown that spatially varying exposure times can influence gaze mo-
tion [SBE∗15]. Further, extreme examples, such as a stop-motion
look, as seen in Cooper and Schoedsack’s King Kong, is perceived as
very unnatural. The effect is due to the complete lack of motion blur,
as the ape model was recorded via still imagery. Interestingly, Bros-
tow and Essa [BE01] proposed a solution to simulate fast shutter
speeds and create a stop-motion look from blurred videos.

Postprocessed motion blur simulates a long exposure shutter by
accumulating video frames. Such frame aggregation has been ex-
plored by tracking image features to backproject the motion onto
a single background image [LWCT14] or by stabilizing the video
on the focus object and averaging the moving pixels [LDG19]. In

both cases, the blur effect is created from camera motion. Other ap-
proaches use optical flow and/or 3D motion vectors to globally track
and create a per-pixel motion blur [RSM]. Spatially-varying blur re-
quires masking and layer compositing via external software [RSM]
or soft brushes [LDG19]. Nonetheless, the temporal motion blur
strength is constant after each keyframe. Our method not only sup-
ports frame aggregation for motion-blur, but uses a general shutter
function description that allows us to achieve many more effects (in-
cluding rolling shutters, stuttered motion, or ghosting). In addition,
we allow shutter functions to change both over space and time, and
ensure seamless interpolation of these.

When processing high frame rate videos, another prominent con-
text of shutter design is temporal filtering. Downsampling can be
used for display on conventional screens [FCW∗10] or to adapt fram-
erate according to image content [TDMS16]. Nonetheless, the pro-
cess has to be carefully applied, as framerate was shown to be more
appreciated than resolution under budget constraints [DBS∗18]. Dis-
ney’s short movie Lucid Dreams of Gabriel [GS14] experiments
with different spatio-temporal expressive effects to enhance story-
telling. Our solution enables a wealth of temporal manipulations via
its shutter-design interface.

3. Method

For our algorithm, we assume an input video that is fully exposed,
meaning that the shutter is open during the whole frame time and
no delay is induced from one frame to the next. While such input is
not standard, modern devices and computational approaches enable
the construction of such a sequence relatively easily. For standard
videos, we prepare in-between frames using optical flow [WRHS13].
Unlike the remaining steps of our method, this preparation is an
offline preprocessing step and we discuss the details in Appendix B.

Given the input video, users can interact in real-time to add simple
shutter annotations in form of scribbles, defining regions that will
be using the according shutter. Shutter definitions are interpolated
over time and space using a diffusion mechanism, creating a shutter
function for each pixel of the video. See Figure 2 for an illustration
of the full pipeline.

In the following, we first explain the mathematical model to
simulate and interpolate shutter functions (Sections 3.1 and 3.2). We
then discuss the implemented user interface (Section 3.3) and how
to provide sparse input to create shutter definitions for the entire
video sequence. The latter is achieved via a diffusion process and an
interpolation of the diffused shutter information. The efficiency of
these two important steps is crucial for achieving real-time feedback
and the details are described in Section 3.4.

3.1. Image formation with a Virtual Shutter

The traditional camera image-formation model defines a frame as
the integration of the incoming light over time while the shutter is
open. For a virtual shutter defined on a video with a fixed frame rate,
time is discretized. The shutter function becomes a set of weights,
one for each discrete quantum of time.

Formally, the input is a fully-exposed video V consisting of T ∈N
frames, such that V (t) , with t < T ∈ N0, is the tth frame. For a
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Figure 2: Our system accepts an input video. If this video is not already fully exposed, the full exposure is created in a preprocessing step. The
user can then design custom shutter functions, create shutter areas and define keyframes for temporal changes. The resulting multi-exposed
video is immediately visible, as the back-end pipeline runs in real-time.

frame t, a shutter function st acts as a filter and attributes weights to
T +1 frames of the input video from frame t onwards, leading to a
filtered frame F (t):

F (t) =
T
∑
τ=0

st (τ)V (t + τ) .

The simple case of reproducing the input video O(t) =V (t) would
define st (τ) = δ0τ, where δi j is the Kronecker delta (one if both
indices match, otherwise zero). Figure 3 illustrates the result of
different shutter functions for the same video input. As the frame
rate of an output video O does not have to match the frame rate of the
input video V , a monotonic frame-mapping function M : N0→ N0
can be used to define the ith output frame O(i) = F(M(i)). The
video O can then be played using the suitable frame time.

3.2. Shutter-function Interpolation

In our approach, shutter definitions will be specified on a per-pixel
basis, thus enabling different shutters in different frame locations
and at different times. To transition between the shutter definitions,
we need to provide an interpolation among them. A trivial choice
would be a linear value interpolation. Unfortunately, this solution
does not result in a meaningful outcome.

Figure 3: Different shutter functions yield distinct results on the
same input video of a horizontally moving sphere. Left: A shut-
ter function equal to δ0τ reproduces the original video (top). By
changing the location of the delta function, the video is time shifted
(bottom). Right: a simulated shutter device with two cuts (top) re-
sults in a compositing of two frames, while a constant exposure
(bottom) creates a motion-blurred result.

Consider the shutter functions s1 (τ) = δ0τ and s2 (τ) = δ(15)τ
(see Figure 4, top), which means that s2 results in a frame that occurs
15 frames after the frame produced by s1. The linearly interpolated
shutter function (Figure 4, bottom right) would just blend both
frames. For a natural transition, one would expect that intermediate
frames between both time steps are obtained (Figure 4, bottom left).
This can be achieved via displacement interpolation [BvdPPH11].

Displacement interpolation is typically applied to probability
distribution functions and can be done by value interpolation of their
inverse cumulative distribution functions [Rea99]. We will present
our efficient implementation in Section 3.4.1.

Figure 4: Comparison of displacement and value interpolation.
Interpolating the input shutter functions (displayed in the top row) at
roughly 50-50 results in the images in the bottom row, depending on
the interpolation method. Displacement interpolation (bottom left)
smoothly shifts time across the transition, resulting in a sharp output
image constructed from the in-between frames. Value interpolation
of the shutters results in a shutter function that just mixes the input
images (bottom right). Video source: pixabay.com.
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3.3. Interface

In order to define and apply different shutter functions to an input
video, we need to indicate their regions of influence, both spatially
and temporally. Our application provides a graphical interface (Fig-
ure 5) to support users in this task.

To apply shutter effects to the video, the first step is to define a
default shutter function that will be applied to all frames, unless
additional shutters are defined. To this extent, the user first chooses
the number of shutter weight entries T , which triggers a graph-
bar editor. Here, the individual shutter-function values are set by
dragging the corresponding bars up and down, representing values
between zero or one. Alternatively, the user can choose among
shutter functions from a predefined library.

To create an additional shutter, the user draws a scribble on a
wanted frame. Again, the user defines a corresponding shutter func-
tion. The new shutter is then active for this frame and applied to
the area covered by the scribble. To use the shutter over several
frames, the user advances in the video and can place key frames. A
keyframe enables the user to redefine the scribble (position, size,
orientation) or the shutter function. For all intermediate frames
between keyframes, the shutter is interpolated (meaning its shut-
ter function, as well as the defining scribbles attributes). Once the
shutter definition is complete, the procedure can be repeated.

For now, the shutter definitions would only be applied directly to
the pixels underneath the scribble annotation. Instead, we actually
want to extend the shutter definitions to the entire frame. To this
extent, we first collect all active shutters at time τ and derive their
interpolated representation from the user defined keyframes. Using
their scribble annotations, a diffusion process is executed to find
shutter interpolation weights for all pixels in the frame. We express
this diffusion process as the solution to a heat transport problem,
where the shutter annotations are used as local constraints, similar
to the work of Orzan et al. [OBW∗08]. In each pixel, the resulting
interpolation weights define a shutter function that is used to process
the input video. We rely on an efficient implementation, which we
detail in Section 3.4.2, such that all steps can be executed in real-
time. Hereby, the user has immediate feedback and can then adjust,
delete or add new shutters until the desired result is obtained.

An illustration of the interface is shown in Figure 5, which con-
tains the graph-bar edit of a shutter function, as well as scribble
annotations for several shutters. Here, a shutter with a longer expo-
sure time is applied to the wood block that is moving towards the
characters, where a short exposure is used.

3.4. Implementation

To achieve real-time performance with high accuracy, our solu-
tion relies on suitable algorithmic choices and an efficient GPU
implementation. The two main performance bottlenecks are the
interpolation of shutter functions and the diffusion of the shutter
annotations. While diffusion accelerations exist [GWL∗05, JCW09],
we opted for an alternative solver that is easy to implement, does not
require geometric or curve primitives, and extends to more complex
diffusion annotations [BEDT10] without sacrificing quality.

Figure 5: Interface for interactively defining shutter functions and
their influence regions. Users design shutter functions using the bar
graph editor, whilst additional details, such as the number of frames
in the function, can be changed using one of the collapsed fold-outs.
Influence regions are defined by drawing scribbles using the corre-
sponding color. The results are immediately visible. The sequence is
from the Big Buck Bunny movie by the Blender Institute [Goe08].

3.4.1. Efficient Shutter-Function Interpolation

To describe the interpolation procedure, given N shutter functions si,
we define the total exposure e(si) = ∑

T
k=0 si (k) and the normalized

accumulation, denoted by a capital letter: Si (τ) = ∑
τ
k=0 si(k)/e(si).

Given the interpolation coefficients ci for shutter si (∑ci = 1 and
ci ≥ 0), we wish to find the interpolated shutter q. We make
use of the observation that q(τ) = (Q(τ+ 1)−Q(τ))e(q), where
e(q) = ∑

N
i=1 cie(si). Hence, having Q allows us to find q. Q is indi-

rectly defined via its inverse, which is, in turn, given by a linear com-
bination of the inverses of the accumulated shutter functions [Rea99]:
Q−1 = ∑

N
i=1 ci S−1

i . This relationship provides a solution to deter-
mine q (Figure 6): first compute all Si, invert them to derive Q−1,
then invert this function to find Q and use it to determine q.

The functions Q and Q−1 depend on the per-pixel and per-frame
coefficients ci, requiring an efficient method for evaluating these
functions in real-time. In the following, we describe our approach.
To simplify, but without loss of generality, we will assume that for
all shutter functions e(si) = 1.

s1

s2

q Q

S1

S2

S1
-1

S2
-1

Q
-1

(1-α)

α

Figure 6: The process of interpolating shutter functions s1 and s2
to produce a new shutter function q requires several steps. First, the
respective accumulation functions are derived (S1,S2). Next, these
functions are inverted and then interpolated. The resulting function
represents Q−1, which is inverted so q can be obtained by deriving
and discretizing the representation.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



N. Salamon & M. Billeter & E. Eisemaan / ShutterApp

We consecutively determine the value for q(τ), with τ = 0 . . .T ,
retrieve each time the corresponding frame pixel, apply the weight
and accumulate the result. In this way, the full function q does not
need to be stored in memory. As q(τ) = Q(τ+ 1)−Q(τ), we can
instead solve for Q(τ), with τ = 0 . . .T and only need the previous
and current value of Q in memory. For now, we will assume that
we have access to Q−1. If we localize z such that τ = Q−1 (z), we
have z = Q(τ). As Q < 1, we can deduce that z ∈ [0,1] and as Q−1

is monotonically increasing, we can employ a bisection method
to solve for z. By default, we use a fixed number of nine search
iterations on this interval, which, due to the interval search, yields
an error of at most 2−10. This error is sufficiently small, as the
precision loss of an 8 bit video is magnitudes larger. However, the
iterations can be adapted for higher dynamic range content.

To complete the calculation of the values of q, we still need to
be able to compute Q−1(z) during the bisection method. We recall
Q−1 = ∑

N
i=1 ci S−1

i , which thus means that we need to invert Si.
We can again solve an equation of the form z = Si(τ). Instead of a
bisection, a binary search over discrete elements is more suitable,
since Si is efficiently represented by an array of T elements.

For numerical robustness, we consider the function Si to be piece-
wise linear. In fact, this reflects that the values of Si stem from an
integration of constant exposure over the frame time. Based on this,
we first search for the first element w+ 1, such that S(w+ 1) > z.
The value S(w) is guaranteed to be smaller or equal to z. We then
compute the refined result τ = w+(z− S(w))/(S(w+ 1)− S(w)),
linearly interpolating w and w+1 based on z.

To reduce the average cost of the searches, we successively shrink
the search space. In each iteration k of the bisection method, a zk
will be updated to a new location zk+1. Assume in iteration k, we
found the set of wk,i in the binary searches. Due to monotonicity, if
zk+1 ≥ zk, then each wk+1,i ≥ wk,i and if zk+1 < zk, then wk+1,i ≤
wk,i. Hereby, the search space for the next wk+1,i shrinks.

A similar optimization can be applied when evaluating consecu-
tive values of Q. We can restrict the lower bound of w0,i based on the
previous values after convergence because Q(τ)≤Q(τ+1). In prin-
ciple, a last option exists to shrink the interval during the bisection
but this case turned out to be inefficient because we already apply
the method with only a few steps. A pseudo-code of our efficient
shutter interpolation implementation is presented in Appendix A.

3.4.2. Efficient Shutter Diffusion

To extend the shutter annotation scribbles to the entire frame, we
rely on a diffusion process. Similar to Orzan et al. [OBW∗08],
we express the diffusion as a heat transport problem, where user
annotations are local constraints. We follow their approach and rely
on a multi-grid solver but perform a customized downsampling to
achieve a high quality diffusion only from the pixel image, without
resorting to geometric primitives.

Specifically, we use two images, a mask image identifying the con-
straint locations, and an image defining the values of the constraints
at those locations. We reduce the problem size by consecutively
halving the resolution until we reach a size of 2×2. For the small-
est image, the solution can be solved immediately and it is then

Figure 7: On the left, we show the diffusion influences arising
from the 2× 2 pixel block containing a red, a green and a blue
constraint as well as one constraint-free location. On the right, we
illustrate the downsampling of influence regions. In particular, the
four fully-enclosed red pixels do not affect the outside at all, and
their contribution disappears after downsampling once.

repeatedly upsampled and recombined with the constraints at the
next resolution level, while applying a small number of diffusion
steps (Jacobi iterations). This process is repeated until we reach the
original image size.

To faithfully maintain the constraints during downsampling, we
analyze each 2×2-pixel block before collapsing and actually store
four values representing an approximation of the accumulated values
that are emitted into the four axis-directions. We refer to the four
values along the axis as an influence block. The first influence blocks
are formed by 2× 2-pixel groups (Figure 7, left). Starting from
an edge of this block, if both adjacent pixels are filled, they both
contribute evenly and we average their values. If one pixel is empty
but the next behind is filled, the closer one contributes with a weight
of one, the farther one with a weight of 0.5. If there are no constraints
in the nearby pixels but both farther pixels contain constraints, then
they contribute evenly. If there is only one pixel, it contributes alone.
If the block contains no constraints, it does not emit anything.

In the following steps, 2×2 groups of influence blocks are com-
bined safely by maintaining their outward influences and discard-
ing interior ones (Figure 7, right). We employ the same weighting
scheme as in the initial step. However, instead of relying on the sin-
gle color value at each location in the block, we fetch the location’s
influence in the currently-considered direction.

During the diffusion process, we naively upsample without any
filtering, replicating pixel values across whole blocks. Upsampling
with linear filtering would introduce additional complexity due to
having to consider surrounding constraints. We are able to limit the
number of Jacobi iterations performed at each level significantly:
we perform six iterations for sizes up to 64×64, two iterations for
higher resolutions. The Jacobi iterations must consider both con-
straint influences (if present) and the diffused values. Intermediate
images storing diffused values use 16 bits of precision per channel,
as an 8 bit color depth results in small gradients vanishing very
early. Figure 8 illustrates a set of user constraints along with dif-
fused results. We compute the results for up to four color channels
(RGBA) simultaneously; constraint locations are stored in a separate
binary map. Note that constraints in close proximity remain properly
separated without bleeding into each other.
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Figure 8: The input image (left) shows the user-drawn scribbles that
create the constraints. The mask (white inset at the bottom) defines
the locations of the constraints. Note the zero-valued (=black) con-
straint in the top-left of the input. The result of the diffusion process
(right) form the per-pixel coefficients for the shutter interpolation.
Importantly, the red influence is fully contained by the outer blue
constraint, and the green and pink regions stay well separated.

4. Results

We implemented the described system as a desktop software that
enables users real-time editing and exploration of different shutter
functions in various video clips. All our experiments were performed
on a standard desktop system running Windows 7, with a Intel
i7 3820 CPU, 16GB of RAM, and a NVIDIA GTX 1080 GPU with
8GB of VRAM. Our input videos were acquired in-house (using a
Samsung Galaxy S8, recording at 120-240Hz), unless a different
source is noted in the image captions (typically recorded at 24-
30Hz). While the usage of high frame rate videos is a desirable
choice to improve the physical accuracy of the time integration, this
is not a requirement. Hence, the input frame rates vary depending on
the video source. The output frame rate is determined from the input
video and user selections, such as the size of the shutter function.

We can achieve a number of different effects with our system. For
example, an object or region can be highlighted by applying a short
shutter, producing a sharp output, while the rest of the image can
use a long shutter that results in motion blur. Figure 1 employs this
effect to keep the text on the moving pendulum readable and attract
attention to it. Figure 9 shows an example where the movement of
one hand is made less visible, to focus on the precise movements of
the right hand. For these effects, the user draws annotations on the
image around the areas of interest; the results are shown in real-time.

The effect can be extended to vary over time. In the video se-
quences show in Figure 10, keyframes are used to change the shut-
ter functions and areas over time. At different moments, a single
moving individual is made sharp to produce a contrast against the
background, which is abstracted using a long exposure. The sharp
areas are further keyframed to follow the subjects. Before switching
to a new person, the shutter function fades out to smoothly merge
the previously highlighted person into the crowd, illustrating the
advantage of our interpolation method. The effect can be reversed,
and attention can be removed from a person instead.

In Figure 11 we demonstrate a time-varying rolling shutter. As
the car drives past, the direction of the rolling shutter switches,
causing the skewing arising from the rolling shutter to reverse. We
realize the rolling shutter in our framework by defining two shutter
functions at the top and bottom of the image, selecting the first
and last frames inside the shutter function’s window, respectively.
The spatial interpolation ensures that the shutter function shifts
smoothly across the window size. Another artistic effect is illustrated

Figure 9: Top: Original frame (left) and user-drawn annotations
(right). Bottom: Diffused per-pixel coefficients and the resulting
frame after applying the shutter functions. Note the blur on the
left hand contrasting with the sharp motion on the right side. Video
source: pixabay.com at 25Hz. Rendering time (avg): 0.59ms in 960×540.

in Figure 12, where the light trails were composited to resemble a
light painting while keeping the person sharp.

We list the per-frame total rendering time for all results in their
respective figure captions. Total time measures wall-time, and thus
includes overheads from other processing. For the shown results, we
defined two shutter functions of varying size. The number of shapes
and keyframes vary across examples.

To isolate performance on the two core steps of our approach
(Diffusion and Interpolation), we specified a set of shapes (two lines
and two lassos) and up to four shutters. The results are evaluated
in 1920×1080 (full HD) and 3840×2160 (4K) resolution and pre-
sented in Table 1, under Ours (full resolution). For completeness,
times for intermediate steps (shape and shutter interpolation for key
frames (CPU) and shape rasterization) are aggregated and listed
as Other. Since the diffusion process is image-based, performance
only depends on resolution. In addition to different resolutions, we
explore the interpolation of different numbers of shutter functions
(N) and different lengths (T ). We compare our method to a sim-
plified interpolation implementation (see column Naive Histogram
Interpolation), i.e. one without our search-space optimizations.

The shutter interpolation step is further sped-up by aggregating
coefficients. Here, we rasterize shapes and compute diffusion in half
resolution, giving each 2×2 block of pixels the same coefficients
for interpolation. We perform the interpolation only once for such a
block, which significantly reduces the computation time for the inter-
polation step (see column Ours w/ aggregation (2x2) in Table 1). We
thereby achieve real-time performance even at 4K resolution, while
minimally impacting image quality: we obtained SSIM [WBS∗04]
differences of 0.9982 (average) and 0.9777 (worst) compared to the
full-resolution results (this difference is considered high quality for
video compression [LB15]).
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Figure 10: A motion blur shutter can be applied selectively to different regions of the image. Here, the keyframed regions track a person in
the images. In the left images, we keep one moving person sharp over a short time span, while blurring the rest. This highlights and draws
attention to the person. On the right, we do the opposite, and remove attention from the person crossing the hall. Left video source: pixabay.com at
25Hz. Rendering time (avg): 1.93ms in 960×540. Right image sequence captured in house at 240Hz. Rendering time (avg): 1.58ms in 1280×720.

Table 1: Run-time performance at full HD and 4K. Diffusion refers to our shutter diffusion GPU process, and Other encompasses various CPU
processing steps such as the shape and shutter interpolation for keyframing. GPU-based spatial shutter interpolation and image composition
times are listed under Shutter Interp. & Comp., and are measured for different numbers of shutter functions (N) and sizes (T ).

Naive Histogram Interpolation Ours (full resolution) Ours w/ aggregation (2×2)

fu
ll

H
D

Diffusion – 0.88 ms 0.35 ms
Other – 0.42 ms 0.39 ms

Shutter
Interp.
& Comp.

N T 8 16 32 64 8 16 32 64 8 16 32 64

2 5.69 ms 12.85 ms 28.69 ms 64.80 ms 3.50 ms 6.88 ms 13.85 ms 28.10 ms 0.92 ms 1.79 ms 3.57 ms 7.31 ms
3 8.05 ms 17.94 ms 40.07 ms 88.84 ms 4.91 ms 9.87 ms 20.33 ms 42.05 ms 1.35 ms 2.71 ms 5.54 ms 11.61 ms
4 10.40 ms 23.20 ms 52.26 ms 117.35 ms 6.48 ms 12.95 ms 27.49 ms 57.13 ms 1.74 ms 3.46 ms 7.27 ms 15.01 ms

4K

Diffusion – 3.04 ms 0.90 ms
Other – 0.57 ms 0.44 ms

Shutter
Interp.
& Comp.

N T 8 16 32 64 8 16 32 64 8 16 32 64

2 22.86 ms 51.01 ms 107.82 ms 244.04 ms 14.04 ms 27.22 ms 54.47 ms 111.13 ms 3.59 ms 6.96 ms 13.77 ms 28.37 ms
3 31.76 ms 72.04 ms 154.93 ms 365.18 ms 19.78 ms 39.07 ms 80.15 ms 167.51 ms 5.36 ms 10.59 ms 21.50 ms 44.83 ms
4 39.39 ms 88.53 ms 203.04 ms 456.94 ms 25.32 ms 51.37 ms 108.50 ms 226.09 ms 6.83 ms 13.68 ms 28.36 ms 58.46 ms

Figure 11: Rolling shutters are realized by defining two time-shifted
shutter functions and interpolating between these. Shutter spans 64
frames. By keyframing the shutter functions, we can cause the effect
to flip midway, reversing the skewing as the car drives past. Black
squares added for anonymization. Video captured in house at 240Hz.
Rendering time (avg): 2.24ms in 1280×720.

Figure 12: Light trails created with a long exposure shutter (span-
ning 0.5 seconds = 120 frames). The remainder of the background
and the person holding the fire pole are kept sharp. Video captured in
house at 240Hz. Rendering time (avg): 8.71ms in 1280×720.

5. Conclusion

We presented a novel method to influence the shutter functions of
a video in a postprocess as well temporally, as also spatially. We
propose a real-time interface, which allows artists to preview their
modifications. It is possible to produce a large variety of results with
little user interaction, making it possible to explore many alternatives
before settling on the desired effect. The quick feedback being key,
we propose optimized algorithms to achieve spatial interpolation
of the shutter definitions. Our solution enables even novice users
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to explore many different opportunities to enhance, stylize and
also impact the gaze of observers. ShutterApp is a step forward in
shifting typical settings that need to be defined during recording
to a postprocess and even offers many more possibilities beyond
standard shutter systems.
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Appendix A: Shutter Interpolation Method Implementation

Pseudo code for evaluation of the functions Q, Q−1 and S−1
i , in-

troduced in Section 3.4.1. We use the same notation and names for
variables and functions here and in the text. Arrays of size N (the
number of shutter functions) are denoted with a []-postfix. Values
relating to the search space optimization are highlighted in color.
Our implementation placed the values of Si in shared memory for
better random-access performance.

Q( τ, c[], searchBoundsLo[] )
-> (float, uint[])

{
// Define the search bounds. Lower bounds are based on
previous evaluations of Q. Upper bounds always start at
the maximum value (T +1). The bounds are updated each
iteration of the bisection (below).

los = searchBoundsLo[];
his = [T +1, ..., T +1];

// Bisection. The bisection performs a fixed number of
steps, halving the remaining search interval each iteration.
After 9 steps ⇒ dz = 2−11, and the "true" |z∗− z| ≤ 2dz.

bounds = [];
z = 0.5f, dz = 0.25f;

for(j = 0; j < SEARCH_ITERATIONS; ++j)
(val, bounds) = Q−1( z, c, los, his );

if( val ≤ τ )
z += dz;
los = bounds; // Adj. lower search bounds

else
z -= dz;
his = bounds; // Adj. upper search bounds

dz *= .5f;

// Return result and indices (bounds) at which the value
was found. The next call to Q (with τ≥ the current τ) will
receive the returned bounds as searchBoundsLo.

return (z, bounds);
}

Q−1( z, c[], searchBoundsLo[], searchBoundsHi[] )
-> (float, uint[])

{
res = 0.f;
bounds = [];

// Q−1 = ∑
N
i=0 ci S−1

i . Evaluate each S−1
i in turn, using the

restricted search space. In addition, propagate the indices
from the search in order to update the search space.

for( i = 0; i < N; ++i )

(t,k) = S−1
i ( z, searchBoundsLo[i],

searchBoundsHi[i] );

res += c[i]*t;
bounds[i] = k;

return (res, bounds);
}

S−1
i ( z, searchBoundLo, searchBoundHi )

-> (float,uint)
{

// Binary search. Find the index of the first element
greater than or equal to z, The search is restricted to the
range [searchBoundLo,searchBoundHi]. Compare to, e.g.,
the C++ standard function std::upper_bound.

lo = searchBoundLo;
hi = searchBoundHi;

while( lo < hi )
mid = (lo+hi)/2;
if( !(z < Si[mid]) ) lo = mid+1;
else hi = mid;

// Linear interpolation. Interpolate between the found value
(≥ z) and the previous value (< z). If the search converges
to 0, return 0.f (avoid out-of-bounds accesses).

if( lo == 0 ) return (0.f, 0);

vhi = Si[lo];
vlo = Si[lo-1];
vinterp = (lo-1) + (z-vlo)/(vhi-vlo);

// Return the linearly interpolated value and the index at
which it was found. The latter is used to restrict the search
space in future searches.

return (vinterp, lo);
}

Usage (e.g., in the body of a fragment or compute shader):
// ... (initialization, etc.) ...
boundsLo = [0, ..., 0];
Qτ = Qτ−1 = 0.f;
for( τ = 1; τ≤ T ; ++τ )

Qτ−1 = Qτ;
(Qτ,boundsLo) = Q( τ/T , c, boundsLo );
contribτ = (Qτ-Qτ−1) * texelFetch( ... ).rgb;
// ... (use/accumulate contribτ) ...

// ... (finalize and output) ...

Appendix B: Full Temporal Exposure

We assume as input a video with full temporal exposure, i.e., where
the shutter of the recording camera does not close. Standard videos
will not always fulfill this requirement, e.g., a 180◦ shutter only
records half of the frame time. Nevertheless, digitally recorded high
framerate videos often come close.

Furthermore, if the sequence consists of short exposed frames,
one can also rely on optical flow [WRHS13, IMS∗17, KTDvG16]
from neighboring frames to form virtual intermediate images that
fill the gaps. Telleen et al. [TSY∗07] compute the in-between frames
by aligning images and calculating pixel movement to simulate
different photo exposures. Jiang et al. [JSJ∗18] train and employ
an encoder-decoder network that can create a virtually unlimited
number of plausible intermediate frames.

For longer exposures, motion blur can occur. Here, a direct in-
terpolation is insufficient to produce frames with a full temporal
exposure, as the time intervals of the frames might overlap after
adding the intermediate frames. A remedy can be deblurring tech-
nique [RPCY17, HKML15] that can transform the long exposure
frame into an approximate short exposure.
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