
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Real-Time GPU Techniques for Advanced
Lighting Phenomena

Markus Billeter

Division of Computer Engineering
Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2014

Real-Time GPU Techniques for Advanced Lighting Phenomena

Markus Billeter
Göteborg, 2014
ISBN 978-91-7385-993-6

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie Nr 3674
ISSN 0346-718X

Technical Report 110D
Department of Computer Science and Engineering
Computer Graphics Research Group

Division of Computer Engineering
Chalmers University of Technology
SE–412 96 Göteborg, Sweden
Phone: +46 (0)31–772 1000

(Scan to download PDF.)

Contact information:
Markus Billeter
Division of Computer Engineering
Dept. of Computer Science and Engineering
Chalmers University of Technology
SE–412 96 Göteborg, Sweden

Phone: +46 (0)31 772 52 12
Fax: +46 (0)31 772 36 63
Email: markus@newq.net

billeter@chalmers.se
URL: http://link.newq.net/home

http://www.cse.chalmers.se/∼billeter

Printed in Sweden
Chalmers Reproservice
Göteborg, Sweden 2014

mailto:markus@newq.net
mailto:billeter@chalmers.se
http://link.newq.net/home
http://www.cse.chalmers.se/%7Ebilleter

Real-Time GPU Techniques for
Advanced Lighting Phenomena

Markus Billeter
Division of Computer Engineering, Chalmers University of Technology

Abstract
In the real world, the visual perception of an object is completely determined by
the object’s interactions with light. One large application of computer graphics
is to visualize virtual objects and worlds in a fashion that is familiar to humans.
Successfully emulating light and its effects on virtual objects therefore plays a
central role.

The papers included in this thesis mainly explore improved methods of comput-
ing the effects of light in various settings. The focus is on doing so in real-time
for interactive applications. Two papers target capturing the visual effects of
light traveling through a participating medium (a medium such as fog or smog).
The first of these papers presents a method that can be used to render shafts of
light/volumetric shadows in real time. The second paper extends this to include
additional effects associated with participating media, including, for example,
indirect illumination of surfaces from light scattered in the medium.

Next, two papers explore real-time rendering with many light sources. One
paper presents a method to efficiently render in the presence of and manage
thousands of light sources and demonstrates scaling up to one million lights.
The other paper focuses on rendering on mobile devices (such as smartphones
and tablet devices), and investigates the possibility of off-loading rendering tasks
to a remote server. The paper presents one approach where a server computes
indirect illumination represented by virtual light sources. The client retrieves
these virtual light sources from the server and uses an adapted version of the
previously presented many-lights technique for rendering.

Graphics processing units (GPUs) play a central role in all these techniques.
Thus, the first paper included in this thesis discusses efficient implementations
of fundamental building blocks for programming GPUs. In particular, it presents
an efficient implementation of the stream compaction operation. It further dis-
cusses the programming strategy that makes the implementation efficient and
demonstrates several related fundamental operations developed using that
strategy.

Keywords: Computer Graphics, GPGPU, Rendering, Shading, Participating
Media, Scattering, Volumetric Shadows, Many-Light, Mobile Graphics.

Acknowledgments
The first round of thanks goes, of course, to my supervisor Ulf. He’s given an
incredible amount of advice, support and feedback over the years ... And a huge
thanks to him for the opportunity to work here in the Graphics Research Group.
That group would not be quite what it is without the other people in it: Erik, Ola
and Viktor. Working with you has been a blast! There are many more people at
Chalmers that have made my time here enjoyable. A thank you to all of these
people, and especially to Per Stenström, my examiner, and Morten Fjeld, my
co-supervisor.

A special thank you to Lei Yang and Liu Ren for giving me the opportunity to
visit and work in the Visual Computing Group at Bosch Research. My time in
California was a great experience. I doubt I’ve visited as many places in such a
short period of time ever before or since - here’s a shoutout to all my co-travelers
that made those trips a reality. (Though, next time I go to Hawaii, I want to
spend more than 4 days there.)

A special mention goes to a group of people that I met in 2003 during my first
days at Chalmers; a group whom I now count to my close friends. Unfortunately,
we’ve gone from meeting daily, to weekly lunches (apparently mostly on days
other than Thursday), to ... less regularly, as people have been moving away
and spreading out. (Spreading out across the whole world, I could say, although
one of us single-handedly accounts for most of the spread by making it all the
way to Australia.)

Finally, thanks to my friends, my parents and my sister. All of you have had
to listen to my weird ideas that (sometimes) seemingly barely make sense, and
have mostly done so quite graciously.

Because this thesis is, in essence, about enabling interactivity, I want to make
the thesis itself a tiny little interactive. So, if you want, you can write your name
in the following blank spot: A special thank you to for
reading my ramblings so far. (And don’t give up reading just quite yet – there’s
more to come.)

Credits
This document uses icons from the “Silk Icons Set 1.3” by Mark James. The icons
are licensed under the Creative Commons Attribution 2.5 License, and can be
found at http://www.famfamfam.com/lab/icons/silk/.

i

http://www.famfamfam.com/lab/icons/silk/

ii

List of Appended Papers
This thesis is a summary of the following papers. References to the papers will
be made using roman numerals.

Paper I – Markus Billeter, Ola Olsson, Ulf Assarsson,
Efficient Stream Compaction on Wide SIMD Many-Core Architectures,
HPG ’09: Proc. of the Conf. on High Performance Graphics (pp 159–166)
New Orleans, Louisiana, 2009

Paper II – Markus Billeter, Erik Sintorn, Ulf Assarsson,
Real Time Volumetric Shadows using Polygonal Light Volumes,
HPG ’10: Proc. of the Conf. on High Performance Graphics (pp 39–45)
Saarbrucken, Germany, 2010

Paper III – Markus Billeter, Erik Sintorn, Ulf Assarsson,
Real Time Multiple Scattering using Light Propagation Volumes,
I3D ’12: Interactive 3D Graphics and Games (pp 119–126)
Costa Mesa, CA, USA, 2012

Paper IV – Ola Olsson, Markus Billeter, Ulf Assarsson,
Clustered Deferred and Forward Shading,
HPG ’12: Proc. of the Conf. on High Performance Graphics (pp 87–96)
Paris, France, 2012

Paper V – Markus Billeter, Lei Yang, Liu Ren, Ulf Assarsson,
Cloud-Assisted Indirect Illumination on Mobile Devices,
manuscript - under revision

iii

Other Contributions
The following contributions by the same author are not directly included in this
thesis.

A – Multi-Light Rendering On Mobile Devices,
Markus Billeter, Ola Olsson, Ulf Assarsson,
(abstract/talk - under submission)

B – Implementing Efficient Virtual Shadow Maps from Many Lights,
Ola Olsson, Erik Sintorn, Viktor Kämpe, Markus Billeter, Ulf Assarsson,
(abstract/talk - under submission)

C – Encoding Binary Voxel Grids for Free Viewpoint Video,
Viktor Kämpe, Markus Billeter, Erik Sintorn, Ulf Assarsson,
(under revision)

D – Efficient Virtual Shadow Maps for Many Lights,
Ola Olsson, Erik Sintorn, Viktor Kämpe, Markus Billeter, Ulf Assarsson,
I3D ’14: Interactive 3D Graphics and Games, San Francisco, CA, USA, 2014

10.1145/2556700.2556701
http://youtu.be/jjAE0h5VNT0
http://link.newq.net/thesis/VirtualShadowMaps

E – Two-Level Grids for Ray Tracing on GPUs,
Javor Kalojanov, Markus Billeter, Phillipp Slusallek,
EG ’11: Eurographics, Llandudno, UK, 2011

10.1111/j.1467-8659.2011.01862.x
http://link.newq.net/thesis/TwoLevelGrids

F – Tiled Forward Shading,
Markus Billeter, Ola Olsson, Ulf Assarsson,
GPU Pro 4 – Advanced Rendering Techniques, A K Peters / CRC Press, 2013

http://www.crcpress.com/product/isbn/9781466567436

G – Tiled and Clustered Forward Shading,
Ola Olsson, Markus Billeter, Ulf Assarsson,
SIGGRAPH ’12: SIGGRAPH Talks, Los Angeles, CA, USA, 2012

10.1145/1572769.1572795
http://link.newq.net/thesis/ClusteredForward

iv

http://dx.doi.org/10.1145/2556700.2556701
http://youtu.be/jjAE0h5VNT0
http://link.newq.net/thesis/VirtualShadowMaps
http://dx.doi.org/10.1111/j.1467-8659.2011.01862.x
http://link.newq.net/thesis/TwoLevelGrids
http://www.crcpress.com/product/isbn/9781466567436
http://dx.doi.org/10.1145/1572769.1572795
http://link.newq.net/thesis/ClusteredForward

Table of Contents

Page

I Summary
1 Introduction 1

1.1 Real-time Rendering . 1
1.2 Tools of Trade . 3
1.3 Overall Objective and Problem Statement 4
1.4 Main Contributions . 5
1.5 Structure of the Thesis . 7

2 Parallel Primitives 7
2.1 Paper I . 9

3 Participating Media 11
3.1 Paper II . 14
3.2 Paper III . 17

4 Many-Light Shading 18
4.1 Paper IV . 22
4.2 Paper V . 24

5 Discussion and Future Work 26
5.1 Recent Advances to Clustered Shading 26
5.2 Tiled Shading on Mobile Devices 28
5.3 Future Directions & Conclusion . 30

Bibliography 32

II Appended Papers
I – Efficient Stream Compaction on Wide SIMD Many-Core Architectures 41

II – Real Time Volumetric Shadows using Polygonal Light Volumes 45

III – Real Time Multiple Scattering using Light Propagation Volumes 49

IV – Clustered Deferred and Forward Shading 53

V – Cloud-Assisted Indirect Illumination on Mobile Devices 57

Glossary 61

v

Part I
Summary

1 Introduction
Computer graphics has, since its inception a little bit over half a century ago, seen
a tremendous growth. Nowadays, computer graphics permeates modern society:
we find applications everywhere, ranging from entertainment to research, design
and even medicine. Because of this wide range of applications, the subject of
computer graphics itself now encompasses a vast number of sub-topics. The
work in this thesis focuses on one such sub-topic: real-time rendering.

Sections 1.1 and 1.2 introduce the subject of real-time rendering and some of
the most important concepts that the remainder of the thesis relies on. Readers
familiar with this field can skip (or just quickly skim) the sections leading up to
Section 1.3 Overall Objective and Problem Statement.

1.1 Real-time Rendering
This thesis primarily deals with the topic of real-time rendering. In computer
graphics, rendering refers to the process of generating a 2D image from a model.
This generated image is then, for example, shown to the user on a screen;
however, this needs not be the case - the generated image could just as well be
used as an input for some other computations.

To view a model that changes over time, we display new images rapidly, where
each image depicts the model at a fixed point in time. If we manage to display
the images rapidly enough, we create the illusion of a smooth animation. This
typically requires us to display in excess of 20 images per second. If we fail to
do so, the animation will look jerky and bad.

A rate of 20 images (frames) per second is a lower limit. While a typical movie
runs at 24 or more frames per second, the recent HFR (high f rame rate) movies
double that. Players of action games might expect at least 60 frames per second
(FPS) and with stereo rendering thrown into the mix, in excess of 120 FPS might
be necessary.

We further distinguish between real-time and off-line rendering. Real-time ren-
dering is required when we wish to be able to interact with our virtual world.
Our interactions change the world (and thus the model that we need to render),
which prevents pre-computation of images. Games typically require real-time
rendering techniques because of this - there is no way to know what decisions
the player makes at any given point in the game.

Given the need to display at least 20 images per second, we have less than 50ms
to render and display each frame. That represents a rather comfortable upper
bound: at 120 FPS, our estimated 50ms frame-budget is decimated to around
8ms. This is further compounded by the fact that it is not always possible to
spend all of this time on rendering.

In contrast, off-line rendering relaxes the restrictions on rendering speed. For
instance, we cannot interact with a movie and affect changes in it. This allows

1

the producers of the movie to pre-compute all images. When pre-computing
images off-line, the rendering process is allowed to take from many seconds to
hours and possibly even days1.

Techniques for movies and other off-line rendering applications nowadays focus
more on quality than raw performance. In the extreme end of this balance, we
find predictive rendering, where the goal is to model reality so accurately that
the rendered image can be used to predict the look of objects in real-life. This
helps designers, for instance, in determining whether their products will look as
expected under various real-life conditions.

Real-time rendering represents in many ways an opposite to predictive render-
ing. In real-time rendering, performance is paramount. Not only must tech-
niques support real-time performance, but they should also have predictable
worst-cases so that smooth animation can be ensured. More often than not, this
requires trading visual quality and complexity for speed. One large aspect of
real-time rendering research is finding appropriate models that display certain
desired features but remain simple enough to enable evaluation in real-time.

One example of this is found in the participating media part of this thesis. A
participating medium is a volumetric effect where many small particles affect
light passing through the volume. Examples of participating media include
fog, clouds and smoke (see Figure 2). The physics of most participating media
are well known, and numerical methods can be used to accurately solve light
transport through such media, at least on limited scales. However, rendering ap-
plications often display scenes on macroscopic scales, and suddenly the accurate
simulations become intractable (even in off-line settings). Section 3 presents par-
ticipating media from a real-time rendering perspective, and discusses models
describing participating media that enable inclusion of some visually important
effects attributed to such media.

Another aspect of real-time rendering is the use of novel and clever algorithms
that reduce the amount of work needed to achieve a certain result, or that
compute the result more efficiently. The many-lights part of the thesis (Section 4)
details such an improvement.

A third aspect that contributes to the ever-improving visuals possible in real-
time rendering are advances on the hardware side. The hardware dedicated to
real-time rendering, the graphics processing unit (GPU), has evolved at a stunning
speed in the past few years. GPUs play a large role in this thesis: a common
theme in all presented methods is that they attempt to utilize the GPU (more)
efficiently. The next section introduces the GPU and other tools that are used to
develop the methods.

1Of course, off-line rendering people care a lot about performance, too. After all, a movie needs to
be finished at some point. Rendering time is not free either - at the very least it consumes electricity.
And artists producing the movie might not be able to continue work without being able to inspect
their results.

2

(a) (b)

Figure 1. Left: NVIDIA GTX Titan GPU (kindly donated to our research group by
the NVIDIA corporation). The GTX Titan is capable of a theoretical throughput of 4.5
TFLOPS and 288 GBytes/sec. Right: Samsung Galaxy Note 10.1 powered by an
ARM Mali-T628 Mobile GPU, rated at 109 GFLOPS and 15 GBytes/sec. The photo
shows the tablet running the client program described in Paper V.

1.2 Tools of Trade

The term GPU was introduced relatively recently (1999) by NVIDIA when
unveiling the GeForce 256. The GeForce 256 is of course by far not the first
type of hardware dedicated to computer graphics - many types of graphics
accelerators existed before it. The GeForce 256 was the first to offload parts of
the geometry processing from the CPU. Nevertheless, the GeForce 256 remains
solely a graphics accelerator.

Accelerating graphics is still one of the main reasons why GPUs exist, but
a modern GPU is no longer just a graphics accelerator. GPUs have become
tremendously powerful: the GPU shown in Figure 1a is capable of sustain-
ing a theoretical throughput of 4.5 TFLOPS and a memory bandwidth of 288
GBytes/sec. This has sparked an increased interest in using GPUs for other
purposes than graphics - for more general computations. The term GPGPU, a
combination of the phrase ‘general purpose’ and GPU, refers to this trend.

Because of this, GPUs exhibit a sort of duality. One one hand, GPUs are devices
dedicated to accelerating rendering. On the other hand, they can run general
purpose algorithms. As programmers, we see this duality in how we access the
GPU. When targeting graphics problems, application programming interfaces (API)
like OpenGL and Direct3D are used. For programming of general algorithms,
we instead use APIs and tools like CUDA or OpenCL2. Really interesting things
happen when these worlds are combined to leverage both the dedicated graphics
features of GPUs and the flexibility of the GPU’s general purpose aspects. Many
of the methods presented in this thesis use a combination of both OpenGL and
CUDA.

2Or, more recently, C++AMP and various types of compute shaders.

3

(a) (b) (c)

Figure 2. Participating media in the real world. Images (a) and (b) display scattering
in relatively homogeneous fog. The photos were taken on Gibraltargatan, just
outside of Chalmers. Image (c) shows a low cloud moving past the cathedral of
Fribourg (Switzerland). The cathedral is illuminated by several strong light sources,
the light of which is scattered in the cloud, making the cloud visible. The density of
the cloud varies; this is an example of a non-homogeneous participating medium.

Mobile GPUs have likewise become powerful in their own right. Figure 1b
displays a Samsung tablet device powered by an ARM Mali-T628 mobile GPU.
This GPU is rated at 109 GFLOPS and has approximately 15 GBytes/sec of
memory bandwidth. For mobile devices, we rely on OpenGL|ES 2.0 and more
recently OpenGL|ES 3.0. These are APIs based on the desktop OpenGL, but with
a somewhat reduced feature set suitable for mobile devices. GPGPU computing
on mobile GPUs is also starting to appear. However, so far only very few
combinations of mobile GPUs, devices and operating systems provide official
support for e.g. OpenCL.

1.3 Overall Objective and Problem Statement

The overarching goal of my work is to develop improved methods for real-time
lighting. The methods should be deployable on modern (high-end) consumer-
grade hardware; I therefore focus on algorithms that run on modern GPUs.

In recent years, GPUs have undergone significant changes in which they have
transformed from devices with mainly fixed-function capabilities targeting com-
puter graphics to devices capable of running general purpose programs. One
open question is how these new capabilities can be harnessed to produce better
algorithms. Yet, GPUs retain many capabilities directly related to rendering.
We should not ignore these capabilities, but take advantage of them when we
develop new methods. By taking full advantage of the GPU, i.e., by taking
advantage of both the general-purpose aspects and fixed functionality, we can
produce visually more convincing effects while retaining the real-time perfor-
mance that interactive applications require.

I examine three sub-topics in this thesis. First, I focus on efficient general-
purpose building-blocks in the form of GPU parallel primitives. Secondly, I
explore rendering in participating media. Finally, I investigate improvements to
many-light rendering methods.

4

Parallel Primitives. To effectively develop efficient parallel algorithms, we need
fundamental building blocks that utilize GPUs well. In Paper I, I focus on stream
compaction, which is one of these building blocks. I familiarize myself with the
GPU and how it is programmable with CUDA. This results in an efficient imple-
mentation of stream compaction and several related operations. Additionally,
Paper I examines a general model and strategy that allows reasoning about and
assists development of efficient GPU algorithms.

Participating Media. Rendering often only takes the geometry of the scene into
account. Yet, including participating media can greatly improve perceived
visual quality. Effects such as shafts of light present the viewer with important
visual cues, like depth and positions of light sources. Additionally, presence
of participating media can drastically change the mood of a scene. Figure 2
displays several real-world photos where participating media play an important
role.

First, I investigate single scattering in Paper II, in order to enable efficient
rendering of volumetric shadows (also known as shafts of light).

Secondly, I look at multiple scattering in Paper III. The goal is to extend render-
ing with participating media to include several additional visually important
effects, including indirect illumination of otherwise shadowed surfaces, and
scattering in shadowed regions of the medium.

Many-Light Shading. Most real-world scenes contain many light sources (see,
e.g., Figure 3a). In addition to these primary light sources, secondary virtual
light sources can be used to emulate indirect lighting effects (Figure 3b). Scenes
can therefore end up containing a large number of light sources that must be
considered during rendering – for example, Ferrier and Coffin [2011] mention
game scenes with several thousands of light sources.

In Paper IV, I explore rendering and management of large numbers of light
sources. The aim is to avoid fundamental problems with previous approaches
and to produce a more probust method.

Finally, in Paper V, I look into rendering on mobile devices such as tablets and
smartphones. The goal is to develop methods that bring advanced and modern
lighting to these devices. The methods should utilize the rapidly improving mo-
bile GPUs (and CPUs), but also take advantage of the always-connected nature
of modern mobile devices. The chosen approach uses a many-light rendering
method derived from the technique developed in Paper IV on the client and
uses remote servers to assist computing and managing indirect illumination.

1.4 Main Contributions
The contributions presented in this thesis are spread across the three sub-topics
of general parallel algorithms, rendering with participating media and rendering
with many lights. However, a common denominator of all presented techniques
in this thesis is that they rely on being able to efficiently utilize the GPU.

5

(a) (b) (c)

Figure 3. Scenarios for many-light rendering. Settings with many lights occur in the
real world (a), as seen in this photo of Las Vegas by night. Many-light–techniques
can be used to emulate indirect lighting (b). The indirect light from the red curtain,
the red ‘reflection’ on the floor, is produced using six (invisible) directional light
sources placed on the curtain. The positions of these six lights are visualized in
the rightmost image (c) using magenta spheres. This image also displays shading
resulting from only the primary light. (Photo (a) by Daniel Lutz, 2012. Used with
permission.)

Paper I explores parallel primitives on GPUs. It presents an efficient stream
compaction implementation. It discusses a model and strategy that allows
development of better parallel algorithms. This model and strategy is used to
implement additional parallel operations. Paper I also builds a foundation for
the future techniques.

Paper II and Paper III explore rendering in participating media. Paper II focuses
on single scattering. It presents a GPU-friendly method to produce volumetric
shadows. The follow-up work, Paper III, extends this to consider other forms of
scattering. It presents a real-time method that enables rendering with a number
of new effects when compared to Paper III, including:

• Indirect illumination of surfaces from scattered light.

• Indirect illumination by light reflected of surfaces.

• Scattering in parts of the medium that are not directly illuminated.

• Scattering of light reflected from surfaces.

Paper IV investigates rendering with many lights. It presents an improved
method for rendering in many-light settings that significantly reduces the num-
ber of lighting computations. The method performs more robustly with respect
to varying views (see, e.g., in-game screenshots presented by Persson and Olsson
[2013]). The method is demonstrated to scale reasonably up to at least 1M light
sources.

Paper V leverages the work from Paper IV to create an adapted many-light

6

rendering method that works on current mobile devices. The adapted method is
used for rendering on the mobile client, which receives information about lights
from a remote server. The received lights represent e.g., indirect illumination
that the server can efficiently compute (and share among many clients). Paper V
shows that the technique presented in Paper IV can be scaled to work on current
mobile devices. It explores what kind of computations can be off-loaded to a
remote server and shows that indirect illumination is one possibility. Indirect
illumination is further client-independent, and a solution for indirect illumina-
tion can be shared among many clients, making it an excellent candidate for
off-loading to a central sever.

1.5 Structure of the Thesis
This thesis is based on five papers. The topic of the first paper, GPU parallel
primitives, is discussed in Section 2 and revolves around general purpose parallel
algorithms. Section 2.1 shortly summarizes Paper I. Paper II and Paper III
consider participating media, which is the topic of Section 3. The papers are
further summarized in Sections 3.1 and 3.2, respectively. The third topic of
many-light rendering is treated in Section 4. Sections 4.1 and 4.2 summarize
Paper IV and Paper V, the two papers on this topic.

Section 5 further discusses the methods and techniques presented in the papers.
Section 5.1 presents recent advances and improvements to the clustered shading
method introduced in Paper IV. Section 5.2 documents some of the experiences
from implementing tiled shading on mobile devices, gathered while developing
Paper V. It also details the reasons for ultimately switching to clustered shading
for our work in Paper V.

2 Parallel Primitives
A core objective of this work is to present algorithms and methods that effi-
ciently utilize the GPU. Paper I focuses on this aspect and presents an algorithm
for stream compaction. The presented strategy is, however, valid for related
operations, such as reductions, scans and stream splits.

These operations serve as building blocks for more advanced procedures. For
instance, sorting functions can be built from consecutive stream compactions
and/or stream splits. Sorting itself is also a fundamental building block for
many methods. For example, we use sorting and (segmented) reductions to
construct a bounding volume hierarchy in Paper IV.

Sequential variants of these algorithms are often quite simple. A reduction
operation reduces multiple elements to a single value using some operator. A
reduction with addition as its operator computes from N input values ai

r =

N∑
i=0

ai.

7

A scan performs a reduction for each input element with all preceding elements
as the reduction’s input. Using addition as the reduction’s operator, it computes
the following:

ri =

i−1∑
j=0

aj . (1)

This special variant of the scan is also known as a prefix sum. The prefix sum
(and the scan operation in general) comes in two flavours: inclusive and exclu-
sive. Equation (1) describes the former, as the i:th input is excluded from the
computation of the i:th output. The inclusive flavour instead includes this last
element.

Conceptually, stream compaction filters elements from the input. A predicate
determines whether each input element is considered valid and should be kept,
or if it is invalid and ought to be discarded. Stream compaction places the valid
elements in an compact output buffer. Listing 1 shows a sequential pseudo-code.
Stream split is a closely related operation: while stream compaction discards the
invalid elements, stream split places invalid elements in the second part of the
output buffer, i.e., after the last valid element.

1 j = 0;
2 for(i = 0; i < N; ++i)
3 {
4 if(a[i] valid)
5 {
6 r[j] = a[i];
7 ++j;
8 }
9 }

Listing 1. Sequential stream compaction. Input elements a[i] are copied to
the output buffer r[i] if they are considered valid. Validity is determined using a
predicate function; for example, the predicate could consider non-zero elements to
be valid.

Implementing a sequential stream compaction is trivial, as demonstrated by
Listing 1. The scan and reduction operations are even simpler. However, the
parallel versions require a bit more thought. For stream compaction, we run into
the problem that the output location of each elements depends on the state of all
previous elements. The problem is not trivially data-parallel.

Blelloch [1990] presents a strategy that uses an exclusive prefix sum to imple-
ment parallel stream compaction. Many modern implementations of stream
compaction still rely on this strategy (including the method presented in Paper I).
Blelloch [1990] also discusses implementations of parallel scans and reductions,
as does e.g., Hillis and Steele [1986]. However, both target somewhat outdated
hardware, and we would like to use the parallel primitives on modern GPUs.

8

2.1 Paper I
Problem. Many parallel methods and algorithms perform much better and are
much easier to realize when their input is stored in a compact range. However,
the result of many parallel methods is sparse. This is where the stream com-
paction comes in: it compacts the intermediate results before these are input into
the next parallel processing step.

For instance, extracting clusters in the page-table–based clustering method of
Paper IV represents one example application of stream compaction. The sorting-
based clustering relies on high-performance radix-sort, which can be built from
consecutive stream splits3. The light hierarchy of Paper IV is built using sorting
and (segmented) reductions.

We need efficient implementations of stream compaction and related operations
like reductions, scans and stream splits. Parallel implementations of these
operations have been studied extensively (see e.g., the work by Hillis and Steele
[1986] and Blelloch [1990]), and several GPU implementations exist. However,
many of these implementations are designed for older GPUs that, for example,
lack support for random write access to memory [Horn, 2005; Roger et al., 2007;
Sengupta et al., 2006]. We would also like to avoid the need for temporary
storage as much as possible. For instance, we would like to avoid storing
the input to and the results of an explicit prefix sum (unlike e.g., the CUDA
implementation suggested by Harris et al. [2008]).

We also found very early that our own implementation of stream compaction
would outperform other publicly available implementations, such as, for ex-
ample, the ones included in the CUDPP library (one of the early libraries to
implement parallel primitives in CUDA).

Methodology. We developed an efficient parallel stream compaction algorithm
using CUDA. Our algorithm avoids over-parallelizing the problem by dividing
the input into compact chunks such that the majority of work can be performed
serially and independently by CUDA warps. The implementation targets the
then-current NVIDIA GTX280 GPU. We evaluated performance of our imple-
mentation and compared it to other implementations. We additionally imple-
mented the scan operation, the stream split and a radix sort based on the stream
split. We compared performance of our implementations to competing methods.

Algorithm Overview. We consider a CUDA warp to be an independent virtual
processor with a SIMD width of S = 32. Threads of a warp execute in lockstep,
and therefore no synchronization is necessary between the threads of a single
warp. The number of virtual processors P must be sufficiently large to enable
latency hiding on the GPU.

We assume that the number of input elements N is larger than P × S. The input

3The radix sort is performed on many 1024-element (322) groups of samples, rather than globally
across all samples in the frame buffer.

9

Figure 4. Illustration of the compaction algorithm. Elements marked with ‘x’ are
invalid and to be removed, while elements ‘A’ through ’L’ should be kept. Our
compaction algorithm is stable, and therefore the order of the valid elements remains
unchanged. In this example we use P = 3 processors with N = 22 input elements.
Processor 1 gets one extra element. The SIMD-nature of the processors is not
visible at this level of detail.

is first subdivided into P compact ranges, and each range is assigned to a virtual
processor. Compaction then occurs in three steps (also illustrated in Figure 4):

1. Each processor independently counts the number of valid elements in its
input range.

2. A single CUDA block performs a scan of the P output elements of the
previous step.

3. Each processor independently copies valid elements from its input range
to its output range, as identified by the offsets computed in Step 2.

Most of the work occurs in Steps 1 and 3. In these two steps, each warp can
process its input elements independently from all other warps.

Contributions. We presented a fast parallel stream compaction method, which
outperformed other known implementations by a factor of 3×. We only use in
the order of O (P) elements of temporary storage. Our implementation is stable,
i.e., the relative order of elements remains unchanged, which is essential when
implementing e.g., a radix sort based on compaction.

We describe a programming model and strategy for attacking problems that are
not completely data parallel (like stream compaction). Our strategy incorporates
knowledge of the underlying hardware and thereby allows better performing
implementations of parallel operations. With this strategy, we implement other
parallel operations, including scans and parallel sorting. The performance of
these operations compares favorably to other concurrent implementations.

Our CUDA-implementations of these parallel operations were made freely

10

(a) (b) (c)

Figure 5. Different types of paths that light can travel on from a light source to the
camera. Traditionally, real-time rendering methods consider paths of type A that
connect the light source to the camera via a surface (a). In a participating medium,
new paths become possible. Paths of type Bi contain one single bounce in the
medium (b) and fall into the category of single scattering. Paths of type Ci contain
two or more bounces in the medium (multiple scattering). Figure (c) illustrates two
bounces only, but we include paths with a higher number of bounces in the class of
paths of type Ci.

available as a small header-only library released under the MIT license.

3 Participating Media
Real-time rendering often focuses on light paths of type A (Figure 5a), i.e., paths
where light travels from a light source to a surface, from where it is reflected
towards the eye. In fact, just identifying paths of type A′, where the path from
the light source to the surface is blocked, remains problematic (some very recent
publications that attack this problem include Dou et al. [2014]; Olsson et al.
[2014] and Sintorn et al. [2014]).

In the presence of a participating medium, several additional paths become
possible and must be considered. We distinguish between two classes of paths.
Paths of type Bi (Figure 5b) fall into the category of single scattering. Here,
paths contain one bounce in the medium. Many techniques, including the one
presented in Paper II, further only consider paths of type B1, where light travels
from the light source into the medium, is scattered once, and then reaches the
camera.

Paths of type Ci (Figure 5c) are scattered several times by the medium. Techni-
cally, paths of typeBi are a subset of type Ci, but in Paper III, where we consider
paths of type Ci, it is convenient to separate these two types.

Note that paths that connect the light source directly to the camera are missing.
In real time applications, (primary) light sources are typically paired with some
geometry that represents the light source (for example, a model of a lamp). This
geometry is shaded in a way that gives the appearance of emitting light, even
though it technically does not. The light source itself is invisible.

11

We need to take into account that light along all paths (including paths of type
A) travels through a medium. The medium absorbs and scatters light. The
attenuation from absorption and scattering is described by Beer’s Law4:

I (s) = I0 e
−β s.

The light’s initial intensity is described by I0, and I (s) is the intensity after
traveling s length units in a medium with an extinction coefficient β (see below).
Beer’s Law has been around since the 18:th century, more recently, Pharr and
Humphreys [2010] derived and described it in the context of computer graphics.

The amount of attenuation depends on the properties of the medium, specifi-
cally, the medium’s extinction coefficient. The extinction coefficient describes
the amount of light that is lost in the medium. Extinction occurs through absorp-
tion and scattering (the extinction coefficient is the sum of the absorption and
scattering coefficients). In reality, media have different amounts of extinction at
different locations (due to variations in e.g., the medium’s density). Because of
this, the extinction coefficient would typically be a function of position.

A common approximation in real-time rendering is the assumption that a
medium is homogeneous. A homogeneous medium has the same properties
everywhere, and, for instance, the extinction coefficient becomes a constant. Ex-
amples where this approximation can be valid include fog and smog (Figures 2a
and 2b). Smoke and clouds are examples where this approximation typically is
invalid, and that need to be treated as heterogeneous media instead (Figure 2c).

A second property of the medium is the scattering phase function. The phase
function specifies how much light is scattered into a certain direction relative
to the direction of the incoming light. In the simplest case, isotropic scattering,
the phase function equals a constant (1

4π) and light is scattered equally in all
directions. Nishita et al. [1987] discuss other, more advanced, phase functions.

Single Scattering. We first focus on single scattering, specifically paths of type B1

(Figure 5b). The amount of light that reaches the camera along a single view ray
is

L = Ld + La,

where Ld is the contribution from paths of type A, and La is the contribution
from paths of type B1 (Figure 6). Nishita et al. [1987] introduce the airlight
integral that computes La:

Ai (r;u, v) = I0

∫ v

u

β k (α)
e−β d(r;t)

d (r; t)
2 e−β t dt.

4Beer’s Law is also known as the Beer-Lambert Law, or as Bouguer’s Law (the name used by
Nishita et al. [1987]), or by a combination of these three names. Pharr and Humphreys [2010] omit
the name altogether and simply derive it from first principles.

12

Figure 6. Airlight integration along two view rays. The left figure shows a schematic
overview. Ray r1 (top) extends from the viewer to infinity, and therefore its airlight
contribution (orange arrows) equals Ai (r1; 0,∞). The ray never intersects with a
surface, so L = La. Ray r2 (bottom) extends from the viewer to its intersection
with the surface. For this ray, L = Ld + La, where Ld is the (attenuated) direct
illumination from the surface (gray arrows). The airlight contribution for r2 equals
La = Ai (r2; 0, x), where x is the distance from the viewer to the intersection with
the surface. The right hand image displays a rendering of such a scene, as seen
from the camera. Example locations that correspond to the situation in the left hand
figure are highlighted with a red (r1) and blue (r2) circle, respectively.

Here, r describes the ray along which integration is performed, and the scalar
parameters u and v define a limited interval on this ray. In Figure 6, one view
ray extends into infinity, so we would use La = Ai (r; 0,∞), and one view ray
is terminated by the surface it is intersecting (La = Ai (r; 0, x), where x is the
distance to the intersection). The function d (r;x) computes the distance from
the point x on the ray r to the light source. The medium is described by the
parameters β (the extinction coefficient) and k (α) (the scattering phase function).

Several papers study the airlight integral and propose efficient ways of its
evaluation. Sun et al. [2005] present a GPU friendly method for evaluating
Ai (·) that relies on a pre-computed texture. Their method, however, assumes
isotropic scattering (k (α) = 1

4π). We employ a slightly modified variant of this
method in both Paper II and Paper III and therefore limit ourselves to isotropic
scattering (details on the modified variant can be found in Eisemann et al. [2011,
Section 9.3.1]). An interesting note is that Sun et al. [2005] also consider other
paths of type Bi and describe methods to take effects from these paths into
account during rendering. These methods ignore scene geometry, however.

Paper II makes few assumptions about the method used to evaluate the airlight
contributions. We could replace the evaluator based on the work of Sun et al.
[2005] with one based on work by e.g., Pegoraro et al. [2009, 2011] (who demon-
strate airlight evaluation with some forms of anisotropy).

13

Multiple Scattering. To compute multiple scattering, we rely on radiative transfer
methods. The seminal work of Chandrasekhar [1960] explores these methods in
some detail5; Pharr and Humphreys [2010] include excellent descriptions of this,
as does the survey by Cerezo et al. [2005].

Beer’s Law is derived from the differential equation dI (s) = −β I (s) ds. It
describes how, at each point in space, a small fraction of the intensity I (s) is
absorbed or scattered away. The differential form of Beer’s Law is a part of the
transport equation that describes light propagation in a medium [Arvo, 1993]:

ω · ∇L (x, ω) = −βL (x, ω) + σ

∫
p (ω, ω′) L (x, ω′) dω′.

Here, ω represents a direction and x a position in space. The coefficients β and σ
describe extinction and scattering, respectively. Radiance L (x, ω) replaces the
one-dimensional intensity I (x) from Beer’s Law. The function p (ω, ω′) is a more
general form of the scattering phase function k (α). Compared to Beer’s Law,
the transport equation additionally considers in-scattering. Note that emission
is omitted in this description, as we do not consider media that emit light in
Paper III (large scale homogeneous media that emit light are not very common
in the everyday world).

The above model can be summarized as follows: the change in radiance in
a certain direction ω at each point x in space is computed from the sum of
the incident radiance, attenuated by absorption and out-scattering; and the
in-scattered radiance into direction ω. With this description we can see that,
conceptually, scattering changes the direction of a portion of the radiance into
directions ω′ to ω. Additionally, some radiance is lost due to absorption.

Paper III presents a propagation scheme based on the this model.

Visual Impact of Scattering. In a model that only supports paths of typeA, surfaces
that face away from a light source and surfaces that are occluded (i.e., in shadow)
never receive any illumination (Figure 7b). Adding paths of type B1 does not
change this, but instead makes the participating medium visible (Figure 7c).
However, adding paths of type B2 and C2 adds indirect illumination to surfaces
that are otherwise completely shadowed (shown in Figure 7d and illustrated
in Figures 8a and 8b). Note that Figure 7d also includes the remainng types of
light paths Bi and Ci. In particular, paths of type C1 make the medium visible
in regions of space that are not directly illuminated (illustrated in Figure 8c).

3.1 Paper II
Problem. By evaluating the airlight integral, we can compute the amount of light
that an illuminated medium scatters towards the viewer (paths of type B1 in
Figure 5). However, not all of the medium is illuminated, as objects in the scene

5While important, the work of Chandrasekhar [1960] is perhaps not the most approachable one
on the topic of radiative transfer methods, at least not for computer graphics applications.

14

(a) (b) (c) (d)

Figure 7. Renderings of the Sibenik Citadel Model with different sets of light paths.
The leftmost image (a) provides a reference rendering with no lighting applied. A
light source is located just outside the circular window in the top of the view. In
(b), only direct illumination (paths of type A) are considered. A significant part of
the scene is now in shadow. Adding volumetric shadows (paths of type B1, using
the technique from Paper II) makes the illuminated parts of the medium visible (c),
and gives the viewer information about the location of the light source. No new
surfaces are revealed, however. When considering multiple scattering (using the
technique from Paper III), previously hidden surfaces are now illuminated thanks to
the inclusion of light paths of type B2 and C2 (d). Remaining paths of types Bi and
Ci are also present in the last image.

block the light and thereby cast shadows not only onto surfaces, but into the
medium itself. We want to capture the latter effect, where shadows become
visible in the participating medium, creating a volumetric shadowing effect.

Each view ray now potentially contains several distinct intervals that are illumi-
nated and therefore contribute airlight. Figure 9 illustrates one view ray with
three such illuminated intervals. Each interval is defined by a position til , where
the view ray enters an illuminated region, and a position tis, where the view ray
leaves the illuminated region.

The core problem is to efficiently identify these intervals and then to evaluate
each interval’s airlight contribution.

One class of previous methods employ ray-marching or slicing, where a contri-
bution is computed at discrete sample-positions along each view ray [Dobashi
et al., 2002]. Ray-marching is very flexible (for example, Wyman and Ramsey
[2008] and Engelhardt and Dachsbacher [2010] support textured light sources),
but tends to require many samples (many techniques focus on reducing the
number of samples that are required - this includes both previously mentioned
techniques and also, for example, Toth and Umenhoffer [2009] and Imagire
et al. [2007]). A different approach relies on shadow volumes. Shadow volumes
avoid issues with sampling. However, traditionally, these methods suffer from
drawbacks such as requiring expensive (and sometimes ambiguous) sorting
operations [Venceslas et al., 2006], or requiring costly depth peeling [James,
2003]. Our method is also based on shadow volumes, but avoids these problems.

15

(a) (b) (c)

Figure 8. Light paths with special visual impacts. Single scattered light from paths of
type B2 and multiple scattered light from paths of type C2 can illuminate surfaces that
are in shadow or that are facing away from the light source (a and b). Additionally,
paths of type C1 add scattering in shadowed regions, and thereby make the medium
visible in those locations (c).

Methodology. A fundamental property of integration is the ability to split a (finite)
integral

∫ b
a

into the sum
∫ c
a
+
∫ b
c

. We initially realized that this enables us to
reformulate the problem of integrating an airlight-contribution for each interval[
til, t

i
s

]
on a ray r into a problem where we compute an airlight-contribution for

each boundary:∑
i

Ai
(
r; til, t

i
s

)
=
∑
i

Ai
(
r; tv, t

i
s

)
−
∑
i

Ai
(
r; tv, t

i
l

)
=
∑
j

sj Ai
(
r; tv, t

j
b

)
Here, tv = 0 is the camera’s position on the view ray r (although any fixed point
on the view ray would work), and tjb is the set of all boundaries (i.e., the union
of all til and tis). The sign sj depends on whether tjb is a transition from lit to unlit
space or vice-versa. Furthermore, addition is commutative, and we can accept
boundaries tjb in any order.

We found traditional shadow volumes to be problematic, because of overlapping
volumes. Instead, we decided to derive the volumes from shadow maps, similar
to the method described by McCool [2000]. The resulting polygonal volumes
are free from overlaps and enclose the regions of the scene that are directly
illuminated.

We implemented the method using OpenGL and GLSL shaders. We derived
our airlight evaluator from the method described by Sun et al. [2005]. We
evaluated performance for a varying number of shadow map resolutions. For
high-resolution shadow maps, we explored a dynamic tessellation scheme which
reduces the amount of geometry used to represent the shadow volumes.

Algorithm Overview. Using a shadow map, we construct a simply-connected
polygonal volume that encloses the space directly illuminated by the light

16

Figure 9. Left: The depicted view ray includes airlight contributions from three
separate intervals. Each interval begins at a transition to lit space, til , and ends at a
transition from lit to shadowed space, tis. Right: Rendering of a view where several
pillars give rise to multiple separate intervals with individual airlight contributions.

source. We render this polygonal volume with neither depth-testing nor back
face culling, such that all surfaces intersecting any view ray generate frag-
ments. We compute the airlight contribution for each fragment; each fragment
represents one boundary tjb. The type of boundary (entering or leaving a lit
region), and therefore the boundary’s contribution’s sign, is determined from
the GLSL attribute gl FrontFacing. All contributions are accumulated into the
frame buffer.

Contributions. Paper II presents a simple, but yet efficient method that can cap-
ture volumetric shadows from single scattering in homogeneous and isotropic
media at real-time frame rates.

The base algorithm only requires support for basic shaders and the ability to
accumulate results into a floating-point frame buffer. It is therefore viable on a
wide range of graphics hardware.

Unlike sampling-based methods, our method produces exact results with respect
to the shadow map resolution.

3.2 Paper III

Problem. Paper II considers paths of typeB1 (Figure 5). We now want to develop
a method that supports additional types of light paths.

At the very least, we want to support paths of type B2, as this enables indirect
illumination of surfaces that would otherwise receive no light. Next, we would
like to support paths of type C1, since this enables light to interact with the
participating medium outside of the directly illuminated regions of space (where
single scattering occurs). We considered these two types of paths most important,

17

but would of course like to support additional types of paths (and, the final
method does in fact support all paths of type Bi and Ci).

Methodology. We separate volumetric shadows that originate from single scatter-
ing from other types of scattering. Volumetric shadows include high-frequency
effects, and several dedicated techniques attack this problem successfully (for
example, Paper II and also later work by Baran et al. [2010]; Chen et al. [2011]
and Wyman [2011]).

Other types of scattering produce much lower frequency effects. We simulate
these effects using light propagation volumes (LPV) described by Kaplanyan and
Dachsbacher [2010]. For this, we developed a modified propagation scheme
that takes scattering into account. Further, we explored the use of the informa-
tion from single scattering to seed the LPVs in order to reduce the number of
simulation iterations and increase the accuracy of the solution.

We implemented the propagation in LPVs using CUDA. For other tasks, we used
OpenGL. We test our proof-of-concept implementation on an NVIDIA GTX 480
GPU. We compare our renderings to solutions produced by an off-line renderer.

Algorithm Overview. We start by seeding the LPV. We use light reflected from
surfaces (as described by Kaplanyan and Dachsbacher [2010]) and light scattered
once by single scattering. We find both contributions in a single reflective shadow
map (RSM). We derive fuzzy blockers from the same RSM. If needed, we insert
additional fuzzy blockers by rendering supplementary (plain) shadow maps.

Next, we propagate light using our modified propagation scheme. This is an
iterative process, and for grids of resolution 323 we perform eight iterations.

We then render the geometry. We use the data stored in the LPV to compute
indirect illumination for rendered surfaces in addition to the usual direct illumi-
nation. Next, we perform ray marching in the LPV to find approximate multiple
scattering in the medium. Finally, we render the single scattering contribution
using the method from Paper II.

Contributions. We present a real-time method for multiple scattering. Our method
includes support for all light paths presented in Figure 5.

Separating single scattering from higher order effects enables the use of very
coarse methods like LPVs, for which we present a formal propagation scheme
that takes the participating medium into account. Our method retains features
from the original LPV method by Kaplanyan and Dachsbacher [2010], such as
the indirect surface-to-surface illumination (illustrated in Figures 10a and 10b).

4 Many-Light Shading
In the previous section, we described lighting resulting from one light source (but
in the presence of a participating medium). In this section, we will now explore
settings with many light sources (albeit without the participating medium). A

18

(a) (b) (c)

Figure 10. Indirect light paths. (a) Illustration of paths where light is emitted from a
light source towards a first surface, from where it is reflected to a second surface and
then towards the eye. LPVs were originally developed to enable indirect illumination
from these types of paths. (b) Rendering with illumination from these paths and from
direct light only. Note the indirect red illumination from the curtain visible on the arch.
(c) Direct illumination only, for comparison.

trivial way to include multiple light sources is to simply repeat the computations
for each light source and sum all contributions6. This becomes costly as the
number of light sources increases. Our aim is to reduce this cost.

Given a single light source, and a function light() that computes the light-
ing from a light source for a view sample, we can express shading using the
following pseudo code:

1 function shade(viewSample, lightData)
2 {
3 outputColor = light(viewSample, lightData);
4 }

The naive approach to shading from many light sources results in the following
code:

1 function shade(viewSample, numLights, lightData[])
2 {
3 outputColor = vec3(0.0);
4

5 for(i = 0; i < numLights; ++i)
6 outputColor += light(viewSample, lightData[i]);
7 }

The light() function is now called numLights times for each shaded view sample.

For a small number of lights, this simple approach works well. But for large
numbers of lights, the amount of computations quickly becomes overwhelming:
shading N view samples with M lights requires M × N evaluations of the
light() method (M × N lighting computations). Many-light shading methods
attempt to increase performance mainly by reducing this number.

6Although, in Paper III, we would rather inject contributions from all lights into the LPV and
perform the simulation only once. Other steps, such as the seeding and final surface shading, need
to be repeated for each light source, though.

19

In forward shading, the problem is potentially even worse. The computations
of shade() are performed for every generated fragment. Overdraw can cause
several fragments to be generated for each pixel, of which only one fragment
affects the final image. Therefore, we would like to eliminate unnecessary
computations due to overdraw.

Another way to reduce the number of lighting computations is by identifying
which lights each view sample is affected by (or conversely, which view samples
each light affects), and only perform lighting computations for this reduced set
of view-sample–light pairs. Expressed in pseudo-code, we get the following:

1 function shade(viewSample, lightData[])
2 {
3 outputColor = vec3(0.0);
4

5 numLightsAtSample = num lights affecting(viewSample);
6 for(i = 0; i < numLightsAtSample; ++i)
7 {
8 lightIdx = global light index(viewSample, i);
9 outputColor += light(viewSample, lightData[lightIdx]);

10 }
11 }

Note that in the worst case (when all lights affect all view samples), this approach
yields no improvement. However, in real-time rendering, light sources are
commonly modelled with a limited range. This ensures that in a typical scene
the worst case never occurs. For example, Ferrier and Coffin [2011] mention
scenes in the game “Need For Speed: The Run” with approximately 2600 light
sources (2200 spot lights and 400 point lights), but where less than 400 light
sources are visible each frame. Further, they aim for an average of 6 light sources
per view sample7.

Deferred shading provides a solution for the problem of overshading due to
overdraw. In deferred shading, geometry is rendered to a G-buffer in a first
pass [Thibieroz, 2003]8. The G-buffer stores all attributes required to compute
shading, which is performed in a separate pass. In this second pass, we know
which samples are visible (namely, the ones that were stored in the G-buffer)
and therefore avoid unnecessary computations.

Thibieroz [2003] suggest drawing a full screen quad per light in the second pass.
Instead, it is possible to draw smaller bounding volumes for each light [Harg-
reaves, 2004; Hargreaves and Harris, 2004], eliminating computations for view
samples that are known to be out-of-range for the light. One drawback of either
method is that data is repeatedly loaded from the G-buffer and results are repeat-
edly accumulated into the output color buffer. So, while reducing the amount of
lighting computations, a massive use of memory bandwidth is introduced.

7Per tile, in fact, since they employ tiled shading.
8Technically, deferred shading was presented earlier (e.g., by Deering et al. [1988] and Tebbs et al.

[1989]), but Thibieroz [2003] describes a modern implementation.

20

Expressed in pseudo-code, conceptually the following situation emerges:

1 function shade(GBuffer, viewSampleIdx, lightData[])
2 {
3 outputColorBuffer[viewSampleIdx] = vec3(0.0);
4

5 for each light potentially affecting the current view sample
6 {
7 /∗ Note: each iteration here corresponds to a separate
8 ∗ fragment shader invocation. ∗/
9 viewSample = GBuffer[viewSampleIdx];

10

11 lightIdx = current light;
12 outputColor = light(viewSample, lightData[lightIdx]);
13

14 outputColorBuffer[viewSampleIdx] += outputColor;
15 }
16 }

Note that the loop’s body in this version is spread across many fragment-shader
invocations, since it is executed once per fragment generated when rendering
light bounding volumes. From a memory-bandwidth point-of-view, we would
much rather have the following situation:

1 function shade(GBuffer, viewSampleIdx, lightData[])
2 {
3 viewSample = GBuffer[viewSampleIdx];
4

5 outputColor = vec3(0.0);
6 for each light potentially affecting the current view sample
7 {
8 lightIdx = current light;
9 outputColor += light(viewSample, lightData[lightIdx]);

10 }
11

12 outputColorBuffer[viewSampleIdx] = outputColor;
13 }

In this version, we read the G-buffer only once, and store a result to the color
buffer exactly once, thereby eliminating a large amount of memory traffic. On
the other hand, we now need to know what lights affect a certain sample. Storing
light-lists per sample is possible, as shown by Trebilco [2009], but expensive.

Tiled shading instead finds what lights affect samples in a tile (samples arranged
in a 2D rectangle). Initial presentations of Tiled shading include Balestra and
Engstad [2008] and Swoboda [2009]; the latter used tiled shading specifically
to enable offloading the lighting computations from the GPU to synergistic pro-
cessing units (SPU) available on the Playstation3’s Cell processor. The technique
quickly gained some traction in the game developer community [Andersson,
2009; Coffin, 2011; Ferrier and Coffin, 2011; White and Barré-Brisebois, 2011], and
later in academia [Billeter et al., 2013; Harada et al., 2012; Olsson and Assarsson,
2011].

21

(a) (b) (c)

Figure 11. Comparison of tiled shading and clustered shading. Solid objects
are shown in blue, and bounding volumes for tiles (a) and clusters (b and c) in
orange. Green light sources affect surfaces (and are not culled), yellow lights
are correctly culled, and red lights represent false positives (light sources that are
not culled, but do not affect any geometry). The leftmost image (a) illustrates the
fundamental problem with tiled shading. The topmost tile’s bounding volume must
stretch across a significant portion of the view’s depth range to enclose all visible
geometry intersecting the tile. The red light sources intersect with the tile’s bounding
volume and must be considered during shading, despite not affecting any visible
geometry. Clustered with implicit bounds (b) already avoids the view-dependent
stretched out bounding volumes. Computing explicit bounds for clusters further
reduces false positives (c).

Paper IV investigates one of the fundamental problems with tiled shading,
namely that grouping samples into 2D tiles is problematic in 3D scenes (Fig-
ure 11a).

4.1 Paper IV

Problem. In tiled shading, samples are grouped into 2D tiles. Depth bounds
are then derived for each tile, which allows reconstruction of an axis aligned
bounding box (AABB) for each tile. Given a regular frame buffer, this is very
simple and efficient.

However, if the view samples within a tile cover a large depth range, the tile’s
bounding box must extend to enclose all view samples. The resulting AABB
spans a large empty region, which leads to many false positives when assigning
lights (Figure 11a), lowering overall performance and efficiency. The amount
of lights assigned to each tile also becomes very view dependent [Ferrier and
Coffin, 2011], which leads to unpredictable and uneven performance.

We aim to explore 3D and higher-dimensional groupings (clusterings) of view
samples to compute a better light to view sample mapping. By doing so, we
aim to increase the number of light sources that can be used in any scene and
also increase robustness by making performance less view-dependent and more
predictable.

22

Methodology. We extend the concept of tiles into clusters, which group view
samples in three or more dimensions. Specifically, we consider grouping view
samples on their 3D position (resulting in a 3D grouping), and on their 3D
position and normal (resulting in a 5D grouping). Each cluster is uniquely
identified by a corresponding cluster key.

The number of clusters is much larger than the number of tiles. Combined
with our aim to support even more light sources, we need to improve light
assignment. We therefore explore a hierarchical approach to light assignment.

We implement the above using OpenGL and CUDA. We make extensive use of
GPGPU techniques from Paper I. We compare efficiency of our method and its
variations to other algorithms (traditional deferred shading and tiled shading)
by measuring the number of lighting computations under varying conditions.
We measure performance for various steps in the clustered shading pipeline.

Algorithm Overview. A cluster key is computed for each view sample based on
the view sample’s 3D position and optionally on its normal. View samples with
identical cluster keys reside in the same cluster; this creates a 3D (or optionally
5D) grouping of view samples. Extracting unique cluster keys from all view
samples yields a list of active clusters.

Lights are assigned to each cluster by constructing and traversing a bounding
volume hierarchy constructed from the lights’ bounding volumes. View samples
are shaded by (re-)computing the cluster key, accessing the lights assigned to
that cluster (through the cluster key), computing lighting from each assigned
light and accumulating the results.

Contributions. We present a simple exponential clustering based on the 3D posi-
tion of a view sample. We also present an extended 5D clustering based on the
3D position and normal of a view sample. We explore several variations of each
clustering method where we use implicit (Figure 11b) and explicit (Figure 11c)
bounding volumes for both positions and normal cones. We present two meth-
ods to extract active clusters from the depth buffer, and optionally from normals
stored in a G-buffer. The first method is based on sorting view samples, and
the second method uses scheme inspired by page-tables from virtual memory
management.

For light assignment, we present a CUDA-based algorithm where we construct a
bounding volume hierarchy over the light sources and then traverse the clusters
against this bounding volume hierarchy. Both traversal and construction is
performed each frame. We show that our light assignment method scales well
up to at least 1M light sources (compared to previous methods that handle a few
thousands to perhaps ten thousand light sources).

We find that (for our test scenes) the 3D clustering performs best. The more
complicated clustering methods reduce the number of lighting computations
further. In fact, the 5D clustering enables light culling based on the facing of

23

surfaces, which can reduce the number of lighting computations beyond what
methods that compute pixel-exact light volume overlap can achieve. Unfortu-
nately, in our implementation and our test scenes, the overheads associated with
constructing the more complex clustering offset the gains in shading time.

We show that clustered shading produces a much more predictable performance
when compared to tiled shading. The tiles’ bounding volumes are very view
dependent, which results in large variations in the number of lighting compu-
tations (and, by that, in shading time). Clustered shading is much less view
dependent, as the variations in the number of lighting computations are much
smaller.

We demonstrate clustered shading with both forward and deferred shading.

4.2 Paper V
Problem. In this paper, we aim to bring modern and high-end graphics to mobile
devices. Previously, two main approaches were considered for mobile graphics:
either off-loading rendering completely to a remote server (“the cloud”), and
streaming the resulting video to the mobile device; or rendering everything
locally. The former approach ignores the rapidly increasing capabilities of
mobile GPUs (and mobile devices in general). The latter approach makes no use
of the always-connected nature of mobile devices.

The primary goal was to identify what (rendering) work could easily be off-
loaded to a remote machine given the following conditions:

• The system should be resistant to network interruptions.

• The server should scale well with an increasing number of clients.

• The system should be able to adapt to different on-client capabilities.

• Network traffic should remain as minimal as possible.

Our target system is a mobile tablet. We use, for example, the Nexus 10 device,
which supports OpenGL|ES 2.0 (and more recently OpenGL|ES 3.0) via the ARM
Mali T-604 GPU. However, we would like to potentially scale up quality for
more capable clients.

A target application is rendering for 3D navigation software, where rendering
must not be interrupted because of network conditions9. This also eliminates
plain video streaming from our options.

There are several reasons for keeping network traffic minimal. For one, band-
width might be limited due to network coverage. Next, users might have limited
alloted data budgets. Finally, other data might need to be transferred too (e.g.,
downloading new maps for areas not yet available on the device).

9The idea being that you probably really want your navigation software to work when you’re so
far from civilization that you’re losing cell coverage. Also, at that point you might care less about
fancy graphics, so being unable to show anything due to this is not an acceptable excuse.

24

Methodology. Our initial investigation focused on finding a good conceptual split
between local and remote work. We found that indirect illumination is a good
candidate for off-loading to a remote server:

• Indirect illumination can be disabled with and replaced with reasonable
fall-backs (e.g., increased ambient light) in case of network problems.

• A single indirect illumination solution is valid for all clients that view the
same scene at the same ‘time’.

Several representations of indirect illumination were considered. We settled for
an approach based on virtual point lights (VPL), where indirect illumination is
represented using spot lights. Crassin et al. [2013] also mention off-loading of
indirection illumination comptutations to remote server, but explore different
representations. For mobile devices, they mainly propose a video-streaming
solution.

On the client side, we implemented first a tiled forward shading renderer [Bil-
leter et al., 2013] targeting OpenGL|ES 2.0. Later, we adapted clustered forward
shading [Olsson et al., 2012] to work with our target devices and implemented a
renderer targeting OpenGL|ES 2.0 and OpenGL|ES 3.0 that utilizes the modified
clustered shading scheme. The adapted clustered forward shading scheme com-
putes light assignment up-front on the CPU, which was shown to be possible
by Persson and Olsson [2013]. This avoids the dependency on GPGPU facilities.
We implemented the renderer on both PC (for more rapid development) and on
the target mobile device.

We implemented a simple server that sends light sources to the client. For se-
lected light sources, the server computes additional spot lights that approximate
indirect illumination. The server keeps track of changes to the light sources
and only generates updates to clients when the light sources change. Therefore,
static lighting uses extremely little bandwidth.

We measured performance on both the server and the client. On the server, we
compared static and per-client work. On the client, we measured rendering
performance under varying lighting conditions.

Algorithm Overview. The implementation is split into two parts: the server and
the client. The client tries to maintain a connection to the server at all times.

The server maintains list of light sources and tracks all connected clients. Each
server-side frame, the server updates all light sources, keeping track of what
properties have changed during the update. Pending updates are accumulated
for each client. Minimal sets of changes are transmitted to clients when they are
ready to receive an update, as determined from network conditions.

On the client, received updates are integrated into the client’s light list. Clients
render the scene locally, using a modified clustered forward shading scheme,
where light assignment is done upfront. This requires assigning lights into all

25

potential clusters; in order to minimize the work load, a cascaded clustering that
reduced the total number of clusters is used.

Contributions. We present a rendering system that is capable of utilizing both
client hardware and remote servers. Our system allows sharing of server-side
computations among many clients, which enables the server to scale well with
respect to the number of connected clients.

On the client side of this system, we present and evaluate a modified clustered
shading scheme that works with current mobile hardware and thereby enables
multi-light rendering on our target devices. We implement and evaluate the
scheme on the Nexus 10 tablet.

5 Discussion and Future Work

So far, my thesis has focused on presenting background to the techniques pre-
sented in the included papers, and on summarizing the papers themselves. In
this section, I will describe and discuss findings and ideas that are related to
the presented methods, but that are not included in the papers. For example,
Section 5.1 presents two further developments to the core technique of clustered
shading (Paper IV). We discovered these advances after the initial publication
and presentation of our clustered shading technique – both developments are
also presented in later publications.

5.1 Recent Advances to Clustered Shading

The interest for tiled and clustered shading has been enormous. On one hand,
several persons from the games industry have expressed interest in clustered
shading for their future products10. On the other hand, our research group
has continued research related to clustered shading, which also has resulted in
several spin-off ideas. For example, Sintorn et al. [2014] cluster view samples
and then build a hierarchy of clusters in order to accelerate per-triangle shadow
volumes. Olsson et al. [2014] use clustered shading together with virtual shadow
maps to enable many-light rendering with shadows.

More directly, we presented an extension to clustered shading that enables
transparency and hardware anti-aliasing (MSAA) [Olsson et al., 2012]. This
extension is also applicable to tiled shading [Billeter et al., 2013]. Further, Persson
discusses an adaption of clustered shading for potential use in an upcoming
game [Persson and Olsson, 2013].

Because of this continued work, we developed several modifications and po-
tential improvements to the original clustered shading method. The important
ideas are summarized as follows.

10Tiled shading was developed and employed in the instustry (e.g., Balestra and Engstad [2008])
before appearing in academic publications Harada et al. [2012]; Olsson and Assarsson [2011].

26

Supporting transparency. Paper IV mentions forward shading, but the presented
method does not support transparency (out-of-the-box). In Paper IV, the clusters
are always extracted from the depth buffer, regardless of whether forward or
deferred shading is employed. (The initial implementation of clustered forward
shading required a pre-Z pass.)

With transparent objects, it is no longer possible to extract clusters from the depth
buffer. Each pixel might contain contributions from several fragments, each with
an individual depth. The depth buffer can only store a single value per pixel,
which makes it impossible to recover depths for all contributing fragments.

We solve this by using image writes (imageStore() in GLSL) in the fragment
shader. The method consists of the following steps:

1. Initialize buffer to zero.

2. Render geometry. In fragment shader, compute cluster key and use
imageStore() to write a non-zero number to the buffer at that index.

3. Extract non-zero elements from buffer. The locations of the non-zero
elements identify which clusters contain fragments.

The buffer can either be a dense buffer, where each cluster is statically allocated
one element, or the page-table based method presented in Paper IV can be used
if the maximal number of clusters is large.

Typically, using e.g. imageStore() would disable early fragment tests (because
the shaders now have a side effect), which may have performance implications.
However, we are not interested in fragments that are completely occluded (as
determined with depth testing), so it is safe to enable early fragment tests in
the shader (and doing so is actually beneficial for both clustering and shading
performance). Because of this, opaque geometry should be rendered first in
a rough front-to-back order, followed by transparent geometry (which must
typically be rendered back-to-front).

Several instances of the fragment shader may attempt to use imageStore() to
the same pixel in the image concurrently. Normally, this would indicate the
presence of a race condition. In practice, one of the imageStore() operations will
win, which results in a non-zero value at that pixel – this is sufficient for us.

With this method, it also becomes trivial to support hardware-accelerated anti-
aliasing schemes like MSAA.

Explicit Bounding Volumes. The page-table based clustering presented in Paper IV
and the method using imageStore() described above both have one common
drawback, compared to the sorting-based methods from Paper IV. We cannot
compute the explicit bounding volume of a cluster (we do not keep track of
which fragments contributed to each cluster) but must use the less precise
implicit bounds. The explicit bounds are often much smaller, which leads to
fewer false positives during light assignment.

27

In Section 4.4 in Olsson et al. [2014], we present a method to compute tighter
bounds for clusters that is compatible with both the page-table based approach
and with the imageStore()-based method. We subdivide each cluster into a 103

grid. For each view sample, we compute the coordinate in this 103 grid of the
cluster in which the view sample resides. We then set the bit corresponding
to each coordinate in three 10-bit fields. The three bit-fields can be packed
into a single 32-bit integer, which is combined with other such integers using
bitwise or operations (we need to ensure that the bitwise-or is atomic). In the
imageStore()-based method, the call to imageStore() is, for example, replaced
with a call to imageAtomicOr()11.

Using bitwise operations (count leading/trailing zeros), we can extract a tighter
bounding volume from the resulting integer. This method requires 32-bits of
storage per (active) cluster. Additionally, the hardware must support a relatively
high throughput of atomic operations.

5.2 Tiled Shading on Mobile Devices

Section 4.2 mentions that we first attempted to employ tiled shading on the
client-side renderer. We later switched to a renderer based on clustered shad-
ing. Paper V does not comment on this further. This section summarizes our
findings from implementing tiled shading in OpenGL|ES 2.0 and our reasons
for ultimately switching to clustered shading.

We initially decided to use tiled shading because of its simplicity. Mobile devices
lacked the GPGPU-capabilities required by the original clustering algorithm12.
At that point, we did not consider performing light assignment on the CPU
to a dense cluster structure to be a viable method (it remains one of the very
performance-sensitive parts of the client-side renderer in Paper V).

The general advantages of clustered shading have already been discussed in this
thesis. Because of the high relative cost of computing shading for one light source
on the mobile devices, the problem with stretched-out tiles in tiled shading (to
which many lights are erroneously assigned) becomes very noticeable. We did
observe stretched-out tiles frequently in our test scenes.

Our tiled shading implementation performed the following steps:

1. Render geometry to frame buffer with a single depth buffer attachment.

2. Compute per-tile minimum and maximum view sample depths using
GLSL and pack results into a 8-bit RGBA texture.

3. Copy per-tile min/max depths to host memory.

11In CUDA, we use atomicOr(). Since we’re not interested in the return value, the compiler can
emit a “reduction operation” (RED.E.OR) instead of the less efficient ATOM.E.OR.

12Both OpenGL image resources and OpenGL-OpenCL interop were unavailable. OpenCL further
lacks meta-programming capabilities, which makes implementing e.g. efficient and general sorting
methods difficult and extremely time-consuming.

28

4. Perform light assignment on CPU. Each tile needs to store a starting offset
into a buffer containing the light data, and the number of lights that were
assigned to this tile.

5. Pack per-tile information into an 8-bit RGBA texture. Pack light data into
several textures (light position and radius were packed into two 8-bit
RGBA textures, light color was stored in one 8-bit RGB texture, and spot
light direction and opening angle used one 8-bit RGBA texture).

6. Render geometry to frame buffer with color buffer and depth buffer at-
tachments. Optionally re-use depth buffer from Step 1.

Step 3 copies data from OpenGL to system memory. In OpenGL|ES 2.0, no
asynchronous methods are available, and we ended up using the glReadPixels()-
method. This introduces a stall. The copy might have been avoidable through
extensions such as OES EGL image external, but avoiding the stall is trickier.

We additionally required two geometry passes (Steps 1 and 6). These did (supris-
ingly) not represent a large bottleneck, even for moderately-sized models such
as the Crytek Sponza. In the Desktop version of the client, we would reuse the
depth buffer from the first pass to improve efficiency of early fragment tests.
Due to the deferred architecture commonly used on mobile GPUs, this did not
improve performance on the mobile devices, and we did not use the feature
there.

In our implementation, Step 2 proved to be an unexpected bottle-neck. One
of the difficulties was that the depth buffer is only accessible through texture-
fetches in shaders; it cannot be copied to host memory directly. In OpenGL|ES
2.0, this required repacking the data into 8-bit textures. Further optimization
might have lessened this problem, however. Also, personal communication
with an ARM-engineer indicated that the hardware already tracks min- and
max-depths for the tiles used in the hardware’s deferred architecture. It might be
possible to gain access to this data through an OpenGL-extension in the future.

Step 2 introduced one additional problem. OpenGL|ES 2.0 does not support
access of individual samples from multi-sampled depth textures (in fact, it does
not support accessing individual multi-samples at all; even multi-sampled color
render targets are resolved before the corresponding texture is accessed in the
shader). As a consequence, we cannot compute the correct min-/max-depth
bounds if MSAA is used. A workaround is to avoid MSAA in Step 1 and only
enable it in Step 6. This results in some visual artefacts, however.

OpenGL|ES 3.0 improves the overall situation somewhat. For instance, packing
various values into 8-bit RGBA textures can be avoided. Support for uniform
blocks and buffers is also an overall improvement. Many of the more funda-
mental problems remain, though – and our modified clustered shading method
bypasses these issues.

Tiled shading should still be considered a valid technique under some circum-

29

stances. For instance, most of the above problems are related to computing
min-/max-depth bounds for each tile. This could be avoided, for example, in
application where top-down views with little variation in depth dominate. In
that case, the light assignment can be done up-front on the CPU (similar to the
up-front light assignment to clusters in Paper V), with the additional advantage
that there are generally much fewer tiles than clusters (Section 4.8 in Billeter
et al. [2013] further discusses the pros and cons of tiled shading).

5.3 Future Directions & Conclusion

Our clustered shading method has gathered some attention in the industry,
and may, in fact, appear in at least one future high-profile game [Persson and
Olsson, 2013]. The method seemingly attacks an important problem. Besides
the improvements and follow-up methods that already are published, there are
several additional potential directions that are open for exploration. Personally,
I would like to revisit the clustering that additionally considers normals.

In our original publication, the overhead from the normal clustering offsets the
gains in time spent shading. On one hand, the situation may look different with
some of our recent improvements (i.e., those discussed in Section 5.1). On the
other hand, normal clustering might perform better in certain situations. For
one, a scene with many large light sources will benefit little from clustering on
positions only - the lights’ bounding volumes overlap with significant parts of
the scene. Normal clustering would still be able to reduce the lighting compu-
tations. Furthermore, we currently approximate the lights’ influence regions
with spheres (an approximation that is common in real-time rendering). This
breaks down in the presence of highly specular materials, where the highlights
can appear cut off towards the outer limit of the bounding volume. Normal clus-
tering might be able to take specularity into account and enable identification of
clusters that are affected by specular contributions from a light source.

Other types of clusterings might also be interesting. It is conceivable to construct
clusters from, for example, material properties rather than positions and normals.
However, we have not yet identified a strong use case for doing so.

Rendering in the presence of a participating medium remains an interesting and
open topic. Several recent publications (e.g., by Klehm et al. [2014]; Wyman and
Dai [2013] present improved methods for rendering single scattering. Real-time
multiple scattering and light transport seem to have received less attention.

I would like to explore the use of a sparse hierarchical representation for the LPV.
The goal is to reduce the memory requirements and the number of computations
during propagation by limiting the total number of cells in the volume. It might
be possible to identify cells in a manner similar to the positional clustering
method. (Olovsson and Doggett [2013] explore the use of a full octree to replace
cascades [Kaplanyan and Dachsbacher, 2010] in the original LPV-setting without
a participating medium. This might be a starting point for future investigation.)

30

In my introduction, I mention how GPUs have become increasingly flexible and
powerful. One measure that my colleagues and I tend to reevaluate whenever
a new GPU appears, is the measure of floating point operations per byte of
available memory bandwidth. For instance, the NVIDIA GTX 280 GPU that I
worked with at the beginning of my Ph.D. studies (the GPU was released in June
2008) has theoretical peak throughputs of approximately 930 GLFOPS and 140
GBytes/sec. This gives around 6.2 floating point operations per byte of memory
bandwidth. For NVIDIA GTX Titan shown in Figure 1a this figure is instead
14.6. Although the exact number tends to fluctuate quite a bit, we have observed
a steady rise in it.

I have followed mobile GPUs significantly less diligently, but a similar trend
seems to hold true. For example, just comparing the various Exynos SoCs
displays this trend already, where memory bandwidth has roughly tripled in
the time period from 2011 to 2013. In the same period, theoretical computational
throughput has increased more than 10×, from around 11 GFLOPS to about 140
GFLOPS.

As a consequence, algorithms that conserve memory bandwidth and rely more
on arithmetic computations and on the increasing flexibility available on modern
GPUs, should scale well in the future. Further, it seems that algorithms that
work well in GPU-like environments are becoming increasing important. CPUs
already are contain multiple cores, and are gaining wider SIMD. Additionally,
all high-end smartphones and tablets sport relatively powerful GPUs. If we
want to fully utilize the power of these (and future) devices, we will have to
rely on increasingly parallel algorithms that are capable of running in GPU-like
environments.

31

References
ANDERSSON, J. 2009. Parallel graphics in Frostbite – Current & Future.

SIGGRAPH: Beyond Programmable Shading. URL
http://dice.se/publications/parallel-graphics-in-
frostbite-current-future/. 21

ARVO, J. 1993. Transfer equations in global illumination. In Global Illumination,
SIGGRAPH ‘93 Course Notes, volume 42. URL
http://www.cs.unm.edu/˜jmk/arvo-notes-93.pdf. 14

BALESTRA, C. and ENGSTAD, P.-K. 2008. The technology of Uncharted: Drake’s
Fortune. Game Developers Conference. URL
http://www.naughtydog.com/docs/Naughty-Dog-GDC08-
UNCHARTED-Tech.pdf. 21, 26

BARAN, I., CHEN, J., RAGAN-KELLEY, J., DURAND, F., and LEHTINEN, J. 2010.
A hierarchical volumetric shadow algorithm for single scattering. In ACM
SIGGRAPH Asia 2010 papers, 178:1–178:10. ISBN 978-1-4503-0439-9. URL
http://doi.acm.org/10.1145/1866158.1866200. 18

BILLETER, M., OLSSON, O., and ASSARSSON, U. 2013. Tiled forward shading.
In GPU Pro 4: Advanced Rendering Techniques. A K Peters/CRC Press. ISBN
9781466567436. URL
http://books.google.com/books?id=TUuhiPLNmbAC. 21, 25, 26, 30

BLELLOCH, G. E. 1990. Prefix sums and their applications. Technical Report
CMU-CS-90-190, CMU School of Computer Science. URL
https://www.cs.cmu.edu/˜guyb/pubs.html. 8, 9

CEREZO, E., PEREZ-CAZORLA, F., PUEYO, X., SERON, F., and SILLION, F. 2005.
A survey on participating media rendering techniques. The Visual Computer,
21(5):303–328. URL
http://maverick.inria.fr/Publications/2005/CPPSS05/. 14

CHANDRASEKHAR, S. 1960. Radiative transfer. Dover Publications. ISBN
9780486605906. URL
https://archive.org/details/RadiativeTransfer;
http://books.google.com/books?id=CK3HDRwCT5YC. 14

CHEN, J., BARAN, I., DURAND, F., and JAROSZ, W. 2011. Real-time volumetric
shadows using 1D min-max mipmaps. In Symposium on Interactive 3D
Graphics and Games, 39–46. ISBN 978-1-4503-0565-5. URL
http://doi.acm.org/10.1145/1944745.1944752. 18

COFFIN, C. 2011. SPU-based deferred shading in Battlefield 3 for Playstation 3.
Game Developers Conference. URL
http://dice.se/publications/spu-based-deferred-shading-
in-battlefield-3-for-playstation-3/. 21

32

http://dice.se/publications/parallel-graphics-in-frostbite-current-future/
http://dice.se/publications/parallel-graphics-in-frostbite-current-future/
http://www.cs.unm.edu/~jmk/arvo-notes-93.pdf
http://www.naughtydog.com/docs/Naughty-Dog-GDC08-UNCHARTED-Tech.pdf
http://www.naughtydog.com/docs/Naughty-Dog-GDC08-UNCHARTED-Tech.pdf
http://doi.acm.org/10.1145/1866158.1866200
http://books.google.com/books?id=TUuhiPLNmbAC
https://www.cs.cmu.edu/~guyb/pubs.html
http://maverick.inria.fr/Publications/2005/CPPSS05/
https://archive.org/details/RadiativeTransfer
http://books.google.com/books?id=CK3HDRwCT5YC
http://doi.acm.org/10.1145/1944745.1944752
http://dice.se/publications/spu-based-deferred-shading-in-battlefield-3-for-playstation-3/
http://dice.se/publications/spu-based-deferred-shading-in-battlefield-3-for-playstation-3/

CRASSIN, C., LUEBKE, D., MARA, M., MCGUIRE, M., OSTER, B., SHIRLEY, P.,
SLOAN, P.-P., and WYMAN, C. 2013. CloudLight: A system for amortizing
indirect lighting in real-time rendering. Technical report, NVIDIA
Corporation. URL
https://research.nvidia.com/publication/cloudlight-
system-amortizing-indirect-lighting-real-time-rendering.
25

DEERING, M., WINNER, S., SCHEDIWY, B., DUFFY, C., and HUNT, N. 1988. The
triangle processor and normal vector shader: A VLSI system for high
performance graphics. In Proceedings of the 15th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’88, 21–30. ISBN 0-89791-275-6.
URL http://doi.acm.org/10.1145/54852.378468. 20

DOBASHI, Y., YAMAMOTO, T., and NISHITA, T. 2002. Interactive rendering of
atmospheric scattering effects using graphics hardware. In Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, 99–107.
ISBN 1-58113-580-7. URL
http://dl.acm.org/citation.cfm?id=569060;
http://nis-ei.eng.hokudai.ac.jp/˜doba/pub_doba.html. 15

DOU, H., YAN, Y., KERZNER, E., DAI, Z., and WYMAN, C. 2014. Adaptive
depth bias for shadow maps. In Proceedings of the 18th Meeting of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games, 97–102. ISBN
978-1-4503-2717-6. URL
http://doi.acm.org/10.1145/2556700.2556706; http:
//homepage.cs.uiowa.edu/˜cwyman/pubs.html#AdaptiveSMBias.
11

EISEMANN, E., SCHWARZ, M., ASSARSSON, U., and WIMMER, M. 2011.
Real-Time Shadows. Taylor & Francis. ISBN 9781568814384. URL
http://www.realtimeshadows.com/. 13

ENGELHARDT, T. and DACHSBACHER, C. 2010. Epipolar sampling for shadows
and crepuscular rays in participating media with single scattering. In
Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games, 119–125. ISBN 978-1-60558-939-8. URL
http://doi.acm.org/10.1145/1730804.1730823. 15

FERRIER, A. and COFFIN, C. 2011. Deferred shading techniques using Frostbite
in “Battlefield 3” and “Need For Speed: The Run”. In ACM SIGGRAPH 2011
Talks. URL http://doi.acm.org/10.1145/2037826.2037869. 5, 20,
21, 22

HARADA, T., MCKEE, J., and YANG, J. C. 2012. Forward+: Bringing deferred
lighting to the next level. In Proceedings of Eurographics 2012 - Short Paper. URL
http://dx.doi.org/10.2312/conf/EG2012/short/005-008. 21, 26

33

https://research.nvidia.com/publication/cloudlight-system-amortizing-indirect-lighting-real-time-rendering
https://research.nvidia.com/publication/cloudlight-system-amortizing-indirect-lighting-real-time-rendering
http://doi.acm.org/10.1145/54852.378468
http://dl.acm.org/citation.cfm?id=569060
http://nis-ei.eng.hokudai.ac.jp/~doba/pub_doba.html
http://doi.acm.org/10.1145/2556700.2556706
http://homepage.cs.uiowa.edu/~cwyman/pubs.html#AdaptiveSMBias
http://homepage.cs.uiowa.edu/~cwyman/pubs.html#AdaptiveSMBias
http://www.realtimeshadows.com/
http://doi.acm.org/10.1145/1730804.1730823
http://doi.acm.org/10.1145/2037826.2037869
http://dx.doi.org/10.2312/conf/EG2012/short/005-008

HARGREAVES, S. 2004. Deferred shading. Game Developers Conference. URL
http://www.shawnhargreaves.com/DeferredShading.pdf. 20

HARGREAVES, S. and HARRIS, M. 2004. Deferred shading. 6800 Leagues Under
The Sea. URL https://developer.nvidia.com/presentations-
6800-leagues-under-sea. 20

HARRIS, M., SENGUPTA, S., and OWENS, J. D. 2008. Parallel prefix sum (scan)
with CUDA. In GPU Gems 3. Addison Wesley Professional. ISBN
9780321515261. URL
http://books.google.com/books?id=ylNyQgAACAAJ; http:
//http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html.
9

HILLIS, W. D. and STEELE, JR., G. L. 1986. Data parallel algorithms. Commun.
ACM, 29(12):1170–1183. ISSN 0001-0782. URL
http://doi.acm.org/10.1145/7902.7903. 8, 9

HORN, D. 2005. Stream reduction operations for GPGPU applications. In GPU
Gems 2: Programming Techniques For High-Performance Graphics And
General-Purpose Computation. Pearson Addison Wesley Prof. ISBN
9780321335593. URL
http://books.google.com/books?id=QuBkQgAACAAJ;
http://http.developer.nvidia.com/GPUGems2/gpugems2_
chapter36.html. 9

IMAGIRE, T., JOHAN, H., TAMURA, N., and NISHITA, T. 2007. Anti-aliased and
real-time rendering of scenes with light scattering effects. The Visual Computer,
23(9-11):935–944. ISSN 0178-2789. URL
http://dl.acm.org/citation.cfm?id=1283966; http:
//link.springer.com/article/10.1007/s00371-007-0140-9. 15

JAMES, R. 2003. True volumetric shadows. In Graphics programming methods,
Charles River Media, Inc., 353–366. ISBN 1-58450-299-1. URL
http://dl.acm.org/citation.cfm?id=957190;
http://www.wavestate.com/pics/pocketmoon.pdf. 15

KAPLANYAN, A. and DACHSBACHER, C. 2010. Cascaded light propagation
volumes for real-time indirect illumination. In Proceedings of the 2010 ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games, 99–107. ISBN
978-1-60558-939-8. URL
http://doi.acm.org/10.1145/1730804.1730821. 18, 30

KLEHM, O., SEIDEL, H.-P., and EISEMANN, E. 2014. Prefiltered
single-scattering. In ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games. URL
http://graphics.tudelft.nl/Publications-new/2014/KSE14.
30

34

http://www.shawnhargreaves.com/DeferredShading.pdf
https://developer.nvidia.com/presentations-6800-leagues-under-sea
https://developer.nvidia.com/presentations-6800-leagues-under-sea
http://books.google.com/books?id=ylNyQgAACAAJ
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html
http://doi.acm.org/10.1145/7902.7903
http://books.google.com/books?id=QuBkQgAACAAJ
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter36.html
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter36.html
http://dl.acm.org/citation.cfm?id=1283966
http://link.springer.com/article/10.1007/s00371-007-0140-9
http://link.springer.com/article/10.1007/s00371-007-0140-9
http://dl.acm.org/citation.cfm?id=957190
http://www.wavestate.com/pics/pocketmoon.pdf
http://doi.acm.org/10.1145/1730804.1730821
http://graphics.tudelft.nl/Publications-new/2014/KSE14

MCCOOL, M. D. 2000. Shadow volume reconstruction from depth maps. ACM
Trans. Graph., 19(1):1–26. ISSN 0730-0301. URL
http://doi.acm.org/10.1145/343002.343006. 16

NISHITA, T., MIYAWAKI, Y., and NAKAMAE, E. 1987. A shading model for
atmospheric scattering considering luminous intensity distribution of light
sources. In Proceedings of the 14th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’87, 303–310. ISBN 0-89791-227-6. URL
http://doi.acm.org/10.1145/37401.37437. 12

OLOVSSON, J. D. and DOGGETT, M. 2013. Octree light propagation volumes.
SIGRAD. URL http://fileadmin.cs.lth.se/cs/Personal/
Michael_Doggett/pubs/olovsson13-olpv.pdf. 30

OLSSON, O. and ASSARSSON, U. 2011. Tiled shading. Journal of Graphics, GPU,
and Game Tools, 15(4):235–251. URL
http://dx.doi.org/10.1080/2151237X.2011.621761. 21, 26

OLSSON, O., BILLETER, M., and ASSARSSON, U. 2012. Tiled and clustered
forward shading. In ACM SIGGRAPH 2012 Talks. URL
http://dx.doi.org/10.1145/2343045.2343095. 25, 26

OLSSON, O., SINTORN, E., KÄMPE, V., BILLETER, M., and ASSARSSON, U. 2014.
Efficient virtual shadow maps for many lights. In Proceedings of the 18th
Meeting of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, 87–96. ISBN 978-1-4503-2717-6. URL
http://doi.acm.org/10.1145/2556700.2556701. 11, 26, 28

PEGORARO, V., SCHOTT, M., and PARKER, S. G. 2009. An analytical approach
to single scattering for anisotropic media and light distributions. In
Proceedings of Graphics Interface 2009, 71–77. ISBN 978-1-56881-470-4. URL
http://dl.acm.org/citation.cfm?id=1555880.1555902. 13

PEGORARO, V., SCHOTT, M., and SLUSALLEK, P. 2011. A mathematical
framework for efficient closed-form single scattering. In Graphics Interface,
151–158. ISBN 978-1-4503-0693-5. URL
http://www.cs.utah.edu/˜vpegorar/research/2011_GI/. 13

PERSSON, E. and OLSSON, O. 2013. Practical clustered deferred and forward
shading. SIGGRAPH: Advances in Real-Time Rendering in Games. URL
http://www.humus.name/index.php?page=Articles&ID=7;
http://s2013.siggraph.org/attendees/courses/session/
advances-real-time-rendering-games-part-i. 6, 25, 26, 30

PHARR, M. and HUMPHREYS, G. 2010. Physically Based Rendering: From Theory
to Implementation. Morgan Kaufmann/Elsevier. ISBN 9780123750792. URL
http://www.pbrt.org/. 12, 14

ROGER, D., ASSARSSON, U., and HOLZSCHUCH, N. 2007. Efficient stream
reduction on the GPU. In Workshop on General Purpose Processing on Graphics

35

http://doi.acm.org/10.1145/343002.343006
http://doi.acm.org/10.1145/37401.37437
http://fileadmin.cs.lth.se/cs/Personal/Michael_Doggett/pubs/olovsson13-olpv.pdf
http://fileadmin.cs.lth.se/cs/Personal/Michael_Doggett/pubs/olovsson13-olpv.pdf
http://dx.doi.org/10.1080/2151237X.2011.621761
http://dx.doi.org/10.1145/2343045.2343095
http://doi.acm.org/10.1145/2556700.2556701
http://dl.acm.org/citation.cfm?id=1555880.1555902
http://www.cs.utah.edu/~vpegorar/research/2011_GI/
http://www.humus.name/index.php?page=Articles&ID=7
http://s2013.siggraph.org/attendees/courses/session/advances-real-time-rendering-games-part-i
http://s2013.siggraph.org/attendees/courses/session/advances-real-time-rendering-games-part-i
http://www.pbrt.org/

Processing Units. URL
http://artis.imag.fr/Publications/2007/RAH07a. 9

SENGUPTA, S., LEFOHN, A. E., and OWENS, J. D. 2006. A work-efficient
step-efficient prefix sum algorithm. In Proceedings of the 2006 Workshop on Edge
Computing Using New Commodity Architectures, D–26–27. URL http:
//www.idav.ucdavis.edu/publications/print_pub?pub_id=894.
9

SINTORN, E., KÄMPE, V., OLSSON, O., and ASSARSSON, U. 2014. Per-triangle
shadow volumes using a view-sample cluster hierarchy. In Proceedings of the
18th Meeting of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, 111–118. ISBN 978-1-4503-2717-6. URL
http://doi.acm.org/10.1145/2556700.2556716. 11, 26

SUN, B., RAMAMOORTHI, R., NARASIMHAN, S. G., and NAYAR, S. K. 2005. A
practical analytic single scattering model for real time rendering. In ACM
SIGGRAPH 2005 Papers, 1040–1049. URL
http://doi.acm.org/10.1145/1186822.1073309. 13, 16

SWOBODA, M. 2009. Deferred lighting and post processing on Playstation 3.
Game Developers Conference. URL
http://www.technology.scee.net/files/presentations/
gdc2009/DeferredLightingandPostProcessingonPS3.ppt. 21

TEBBS, B., NEUMANN, U., EYLES, J., TURK, G., and ELLSWORTH, D. 1989.
Parallel architectures and algorithms for real-time synthesis of high quality
images using deferred shading. Technical report, UNC Dept. of Computer
Science. URL www.dtic.mil/dtic/tr/fulltext/u2/a236590.pdf.
20

THIBIEROZ, N. 2003. Deferred shading with multiple render targets. In
ShaderX2: Shader Programming Tips and Tricks with DirectX 9.0. Wordware
Publishing, Incorporated. ISBN 9781556229886. URL
http://www.shaderx2.com/;
http://books.google.com/books?id=2JJEPQAACAAJ. 20

TOTH, B. and UMENHOFFER, T. 2009. Real-time volumetric lighting in
participating media. EUROGRAPHICS Short Papers. URL
http://sirkan.iit.bme.hu/˜szirmay/lightshaft_link.htm. 15

TREBILCO, D. 2009. Light indexed deferred rendering. In ShaderX7: Advanced
Rendering Techniques. Charles River Media. ISBN 9781584505983. URL
http://books.google.com/books?id=iZjrPAAACAAJ. 21

VENCESLAS, B., DIDIER, A., and SYLVAIN, M. 2006. Real time rendering of
atmospheric scattering and volumetric shadows. Journal Of WSCG, 14(1-3):
65–72. URL http://hdl.handle.net/11025/1362; https://otik.
uk.zcu.cz/bitstream/handle/11025/1362/Venceslas.pdf. 15

36

http://artis.imag.fr/Publications/2007/RAH07a
http://www.idav.ucdavis.edu/publications/print_pub?pub_id=894
http://www.idav.ucdavis.edu/publications/print_pub?pub_id=894
http://doi.acm.org/10.1145/2556700.2556716
http://doi.acm.org/10.1145/1186822.1073309
http://www.technology.scee.net/files/presentations/gdc2009/DeferredLightingandPostProcessingonPS3.ppt
http://www.technology.scee.net/files/presentations/gdc2009/DeferredLightingandPostProcessingonPS3.ppt
www.dtic.mil/dtic/tr/fulltext/u2/a236590.pdf
http://www.shaderx2.com/
http://books.google.com/books?id=2JJEPQAACAAJ
http://sirkan.iit.bme.hu/~szirmay/lightshaft_link.htm
http://books.google.com/books?id=iZjrPAAACAAJ
http://hdl.handle.net/11025/1362
https://otik.uk.zcu.cz/bitstream/handle/11025/1362/Venceslas.pdf
https://otik.uk.zcu.cz/bitstream/handle/11025/1362/Venceslas.pdf

WHITE, J. and BARRÉ-BRISEBOIS, C. 2011. More performance! Five rendering
ideas from Battlefield 3 and Need For Speed: The Run. SIGGRAPH:
Advances in Real-Time Rendering in Games. URL http:
//dice.se/publications/more-performance-five-rendering-
ideas-from-battlefield-3-and-need-for-speed-the-run/. 21

WYMAN, C. 2011. Voxelized shadow volumes. In Proceedings of the ACM
SIGGRAPH Symposium on High Performance Graphics, 33–40. ISBN
978-1-4503-0896-0. URL
http://doi.acm.org/10.1145/2018323.2018329;
http://homepage.cs.uiowa.edu/˜cwyman/pubs.html#
VoxelizedShadowVolumes. 18

WYMAN, C. and DAI, Z. 2013. Imperfect voxelized shadow volumes. In
Proceedings of the 5th High-Performance Graphics Conference, 45–52. ISBN
978-1-4503-2135-8. URL
http://doi.acm.org/10.1145/2492045.2492050; http:
//homepage.cs.uiowa.edu/˜cwyman/pubs.html#ImperfectVSVs.
30

WYMAN, C. and RAMSEY, S. 2008. Interactive volumetric shadows in
participating media with single-scattering. IEEE Symposium on Interactive Ray
Tracing, 2008. RT, 87–92. URL
http://dx.doi.org/10.1109/RT.2008.4634627;
http://homepage.cs.uiowa.edu/˜cwyman/pubs.html#
InteractiveVolumeShadows. 15

37

http://dice.se/publications/more-performance-five-rendering-ideas-from-battlefield-3-and-need-for-speed-the-run/
http://dice.se/publications/more-performance-five-rendering-ideas-from-battlefield-3-and-need-for-speed-the-run/
http://dice.se/publications/more-performance-five-rendering-ideas-from-battlefield-3-and-need-for-speed-the-run/
http://doi.acm.org/10.1145/2018323.2018329
http://homepage.cs.uiowa.edu/~cwyman/pubs.html#VoxelizedShadowVolumes
http://homepage.cs.uiowa.edu/~cwyman/pubs.html#VoxelizedShadowVolumes
http://doi.acm.org/10.1145/2492045.2492050
http://homepage.cs.uiowa.edu/~cwyman/pubs.html#ImperfectVSVs
http://homepage.cs.uiowa.edu/~cwyman/pubs.html#ImperfectVSVs
http://dx.doi.org/10.1109/RT.2008.4634627
http://homepage.cs.uiowa.edu/~cwyman/pubs.html#InteractiveVolumeShadows
http://homepage.cs.uiowa.edu/~cwyman/pubs.html#InteractiveVolumeShadows

Part II
Appended Papers

Paper I

Efficient Stream Compaction on Wide SIMD
Many-Core Architectures

Markus Billeter, Ola Olsson, Ulf Assarsson

Reprint from
HPG ’09: Proc. of the Conf. on High Performance Graphics

pp 159–166
New Orleans, Louisiana, 2009

10.1145/1572769.1572795
http://link.newq.net/thesis/StreamCompaction
http://link.newq.net/thesis/StreamCompactionPdf

http://dx.doi.org/10.1145/1572769.1572795
http://link.newq.net/thesis/StreamCompaction
http://link.newq.net/thesis/StreamCompactionPdf

Efficient Stream Compaction on Wide SIMD Many-Core
Architectures

Markus Billeter, Ola Olsson, Ulf Assarsson
Chalmers University of Technology

Abstract
Stream compaction is a common parallel primitive used to remove un-
wanted elements in sparse data. This allows highly parallel algorithms to
maintain performance over several processing steps and reduces overall
memory usage.

For wide SIMD many-core architectures, we present a novel stream com-
paction algorithm and explore several variations thereof. Our algorithm
is designed to maximize concurrent execution, with minimal use of syn-
chronization. Bandwidth and auxiliary storage requirements are reduced
significantly, which allows for substantially better performance.

We have tested our algorithms using CUDA on a PC with an NVIDIA
GeForce GTX280 GPU. On this hardware, our reference implementation
provides a 3× speedup over previous published algorithms.

Keywords: stream compaction, prefix sum, parallel sorting, GPGPU, CUDA.

43 (Paper I:1)

Paper II

Real Time Volumetric Shadows using Polygonal
Light Volumes

Markus Billeter, Erik Sintorn, Ulf Assarsson

Reprint from
HPG ’10: Proc. of the Conf. on High Performance Graphics

pp 39–45
Saarbrucken, Germany, 2010

10.2312/EGGH/HPG10/039-045
http://link.newq.net/thesis/VolumetricShadows
http://link.newq.net/thesis/VolumetricShadowsPdf
http://youtu.be/DUpOr2zdfwE

http://dx.doi.org/10.2312/EGGH/HPG10/039-045
http://link.newq.net/thesis/VolumetricShadows
http://link.newq.net/thesis/VolumetricShadowsPdf
http://youtu.be/DUpOr2zdfwE

Real Time Volumetric Shadows using Polygonal Light
Volumes

Markus Billeter, Erik Sintorn, Ulf Assarsson
Chalmers University of Technology

Abstract
This paper presents a more efficient way of computing single scattering ef-
fects in homogeneous participating media for real-time purposes than the
currently popular ray-marching based algorithms. These effects include ha-
los around light sources, volumetric shadows and crepuscular rays. By dis-
placing the vertices of a base mesh with the depths from a standard shadow
map, we construct a polygonal mesh that encloses the volume of space that
is directly illuminated by a light source. Using this volume we can calcu-
late the airlight contribution for each pixel by considering only points along
the eye-ray where shadow-transitions occur. Unlike previous ray-marching
methods, our method calculates the exact airlight contribution, with respect
to the shadow map resolution, at real time frame rates.

47 (Paper II:1)

Paper III

Real Time Multiple Scattering using Light
Propagation Volumes

Markus Billeter, Erik Sintorn, Ulf Assarsson

Reprint from
I3D ’12: Interactive 3D Graphics and Games

pp 119–126
Costa Mesa, CA, USA, 2012

10.1145/2159616.2159636
http://link.newq.net/thesis/MultiScatter
http://link.newq.net/thesis/MultiScatterPdf
http://youtu.be/HtxLVufIHTM

http://dx.doi.org/10.1145/2159616.2159636
http://link.newq.net/thesis/MultiScatter
http://link.newq.net/thesis/MultiScatterPdf
http://youtu.be/HtxLVufIHTM

Real Time Multiple Scattering using Light Propagation
Volumes

Markus Billeter, Erik Sintorn, Ulf Assarsson
Chalmers University of Technology

Abstract
This paper introduces a new GPU-based, real-time method for rendering
volumetric lighting effects produced by scattering in a participating medium.
The method includes support for indirect illumination by scattered light,
high-quality single-scattered volumetric shadows, and approximate multi-
ple scattered volumetric lighting effects in isotropic and homogeneous me-
dia.

The method builds upon an improved propagation scheme for light prop-
agation volumes. This scheme models scattering according to the radia-
tive light transfer equation during propagation. The initial state of the
light propagation volumes is based on single-scattered light identified with
shadow maps; this allows generation of a high quality initial distribution of
radiance. After propagation, the resulting distribution is used as a source
of diffuse light during rendering and is also ray marched for volumetric
effects from multiple scattering. Volumetric shadows from single-scattered
light are rendered separately.

We compare the new method to single-scattered volumetric shadows pro-
duced by contemporary techniques, plain light propagation volumes (which
this new method extends), and a simple composition thereof.

Keywords: real-time, scattering, light propagation volumes.

51 (Paper III:1)

Paper IV

Clustered Deferred and Forward Shading
Ola Olsson, Markus Billeter, Ulf Assarsson

Reprint from
HPG ’12: Proc. of the Conf. on High Performance Graphics

pp 87–96
Paris, France, 2012

10.2312/EGGH/HPG12/087-096
http://link.newq.net/thesis/ClusteredShading
http://link.newq.net/thesis/ClusteredShadingPdf
http://youtu.be/6DyTk7917ZI

http://dx.doi.org/10.2312/EGGH/HPG12/087-096
http://link.newq.net/thesis/ClusteredShading
http://link.newq.net/thesis/ClusteredShadingPdf
http://youtu.be/6DyTk7917ZI

Clustered Deferred and Forward Shading

Ola Olsson, Markus Billeter, Ulf Assarsson
Chalmers University of Technology

Abstract
This paper presents and investigates Clustered Shading for deferred and
forward rendering. In Clustered Shading, view samples with similar prop-
erties (e.g. 3D-position and/or normal) are grouped into clusters. This is
comparable to tiled shading, where view samples are grouped into tiles
based on 2D-position only. We show that Clustered Shading creates a bet-
ter mapping of light sources to view samples than tiled shading, resulting in
a significant reduction of lighting computations during shading. Addition-
ally, Clustered Shading enables using normal information to perform per-
cluster back-face culling of lights, again reducing the number of lighting
computations. We also show that Clustered Shading not only outperforms
tiled shading in many scenes, but also exhibits better worst case behaviour
under tricky conditions (e.g. when looking at high-frequency geometry
with large discontinuities in depth). Additionally, Clustered Shading en-
ables real-time scenes with two to three orders of magnitudes more lights
than previously feasible (up to around one million light sources).

55 (Paper IV:1)

Paper V

Cloud-Assisted Indirect Illumination on Mobile
Devices

Markus Billeter, Lei Yang, Liu Ren, Ulf Assarsson

manuscript - under revision

http://youtu.be/2lPyWkRrVRc

http://youtu.be/2lPyWkRrVRc

Cloud-Assisted Indirect Illumination on Mobile Devices

Markus Billeter†, Lei Yang‡, Liu Ren‡, Ulf Assarsson†
†Chalmers University of Technology
‡Bosch Research North America

Abstract
In this paper we present a new system design for displaying indirect light-
ing on mobile devices with support from the cloud. One of the major chal-
lenges of such systems is to find an efficient and reliable way to partition
the indirect lighting computation between server and client. We propose to
use Instant Radiosity as the indirect lighting algorithm, and Virtual Point
Lights as the intermediate lighting result that is generated on the server and
transmitted to the clients. We also propose a variant of the clustered for-
ward shading algorithm to achieve efficient indirect lighting accumulation
on low-power mobile clients. Compared with existing solutions, our sys-
tem requires less bandwidth and is capable of generating view-dependent
indirect lighting effects such as glossy reflections. We show that our method
scales from low-power mobile clients to powerful PC clients. We also eval-
uate our system in a few application scenarios, and discuss its scalability
with an increased number of clients.

59 (Paper V:1)

60

Glossary
AABB – axis aligned bounding box A box whose sides are aligned with the

axes of the coordinate system. 3D AABBs can be represented using only
six scalar values. 22

absorption The process where a participating medium absorbs light. For render-
ing purposes, absorption causes light to ‘disappear’, unlike out-scattering,
which ‘redirects’ light. Extinction is a combination of both absorption and
scattering. 12, 14, 62, 64

airlight In-scattered light from single scattering, accumulated along a ray/line
segment. See Section 3. 12–17

API – application programming interface An API specifies a set of pre-defined
methods and functions that programmers can use to perform specific tasks.
3, 4, 62–65

atomic Used to describe (or refer to) an operation that appears to be uninter-
ruptible. For example, the C/C++ statement a += b expands into several
primitive operations (e.g., something like load a, load b, add the two, and
store the result back to a). Therefore, executing a += b two times in parallel,
might result in a holding the value (a + b)13, and not (a + b + b). If the
operation a += b were atomic, we would be guaranteed that a holds the
expected result of (a+ b+ b). Some atomic operations are supported by the
hardware, in which case they typically are accessed through special func-
tions/intrinsics. The GLSL method imageAtomicOr() is one such function.
28, 63

cloud A visible mass of liquid droplets suspened in the atmosphere. Sometimes
also an invisible mass of computers suspended in data centers. 4, 24

cluster Introduced in Paper IV. A cluster is a grouping of view samples based
on the view sample’s properties. Clusters are a generalization of tiles. We
present groupings in 3D (position) and 5D (position and normal); however,
other groupings are possible (and might be interesting to explore). 22, 23,
27, 28, 30, 61

cluster key A cluster key identifies a cluster uniquely. A cluster key can be
computed from properties associated with a view sample (e.g., the view
sample’s position). The cluster key serves as an (indirect) index to the
cluster’s data (e.g., lights assigned to the cluster). Furthermore, some of
the cluster’s properties, such as the cluster’s implicit bounding volume,
can be inferred from a cluster key. 23, 27

13Or, theoretically, any other value.

61

color buffer The color buffer stores the color (RGB or RGBA) of each visible
fragment/pixel. A color buffer can later be shown to the user on screen, or
it can be used for further processing e.g., as a texture. 20, 21, 29, 63, 64

CUDA GPGPU platform developed by NVIDIA, targeting NVIDIA GPUs.
CUDA enables development of general-purpose algorithms that run on
the GPU without taking the detour via shader-programs. CUDA includes
an off-line CUDA C/C++ compiler, that significantly simplifies integra-
tion of library methods into GPU programs compared to shader-based
approaches. 3, 5, 9, 10, 18, 23, 62, 66

CUDPP The CUDA Data Parallel Primitives Library, an early CUDA library that
implements many parallel primitives (see Section 2). The most recent ver-
sion of the library is available at http://code.google.com/p/cudpp/.
9

deferred shading Deferred shading referes to a mode of rendering. Unlike
forward shading, which computes shading of fragments immediatly after
generating these, deferred shading defers the shading. In deferred shading,
the fragment shader instead writes data from each fragment into a G-
buffer. Once all geometry has been processed, the view samples that are
now stored in the G-buffer are shaded. 20, 62, 63

depth buffer The depth buffer stores the depth (the distance from the camera)
of each fragment. The depth buffer is a core component of rendering with
rasterization, where it solves the visibility problem (i.e., the problem of
hiding occluded surfaces). A fragment’s 3D position can be reconstructed
from the depth buffer via the fragment’s XY-coordinate in the depth buffer,
the associated depth stored at that location and the projection matrix used
during rendering. 23, 27–29, 63, 65

extinction The combination of absorption and out-scattering. Since both ab-
sorption and out-scattering remove light traveling into a certain direction,
it is convenient to treat them as a single phenomenon. 12, 13, 61, 64

forward shading The ‘traditional’ mode of rendering when using APIs like
OpenGL and Direct3D. Triangles representing the scene’s geometry are
transformed and rasterized to the screen. Rasterization generates frag-
ments which are shaded using a fragment shader. The alternative to
forward shading is deferred shading. 20, 62

fragment During rasterization, the GPU generates fragments for each pix-
el/sample that a triangle overlaps with. The fragments are processed
by the fragment shader, which determines each fragments resulting prop-
erties (e.g., color). Fragments are then merged into the frame buffer, as-
suming that they pass certain tests such as, for example, the depth test,
which determines if the fragment is occluded due to surfaces rendered
earlier. 17, 20, 21, 27, 62, 65

62

http://code.google.com/p/cudpp/

frame buffer The buffer to which rendering occurs. A frame buffer has several
attachments. These include typically a color buffer and a depth buffer. 17,
22, 28, 29, 62, 63, 65

G-buffer Short for ‘geometry buffer’. G-buffers are used in deferred shading.
G-buffers store all attributes that are needed to compute shading for each
view sample. This includes for example positions, normals, albedo, diffuse
and specular colors. G-buffers are typically constructed by rendering
geometry with a special fragment shader to a frame buffer with multiple
buffer attachments. 20, 21, 23, 62, 65

GLSL The OpenGL Shading Language. OpenGL shaders are written in GLSL. A
number of flavours of GLSL exist: different shader types (vertex, fragment,
geometry, ...) have access to slightly different functions, and GLSL has
seen several revisions of the language with various OpenGL versions.
Additional GLSL dialects exist for OpenGL|ES 2.0 and OpenGL|ES 3.0. 16,
17, 28, 61, 63

GPGPU Combination of the terms “general purpose” and “GPU”. Refers to the
use of GPUs to solve general (non-graphics) problems. 3, 4, 23, 25, 28, 62

GPU – graphics processing unit A specialized processor that traditionally as-
sisted and accelerated rendering tasks. Modern GPUs are massively par-
allel processors that can be used for both rendering and general purpose
computing. GPUs in their various forms are now found in many places,
ranging from mobile devices to clusters dedicated for scientific computing.
2–9, 21, 24, 31, 62, 63

imageAtomicOr() GLSL method. Atomic bitwise-or operation to OpenGL im-
age resources. Requires OpenGL version 4.2, EXT shader image load store
or ARB shader image load store. 28, 61

imageStore() GLSL method. Enables arbitrary writes to OpenGL image re-
sources (image2D, imageBuffer etc.) from GLSL shaders. Requires OpenGL
version 4.2, EXT shader image load store or ARB shader image load store. 27,
28

LPV – light propagation volume A technique where light is injected into a grid
and then iteratively transferred to neighbouring cells. Originally used to
compute indirect illumination arising from light reflected from one surface
to another. Paper III adapts LPVs to also consider a participating medium.
See Section 3. 18, 19, 30

MSAA Short for Multisample anti-aliasing. MSAA is a anti-aliasing scheme
supported by modern GPUs. MSAA reduces the overheads compared to
true supersampling by decoupling shading from storage. 26, 27, 29

OpenGL Cross-platform rendering API initially developed by SGI and now
managed by the Khronos Group. OpenGL enables the use of GPUs for

63

rendering tasks. OpenGL comes in frustratingly many forms and versions:
the current version is 4.4, but far from all computers support this version.
OpenGL|ES 2.0 and OpenGL|ES 3.0 are derived from standard OpenGL
and target mobile devices. 3, 4, 16, 18, 23, 29, 62–65

OpenGL|ES 2.0 Rendering API derived from OpenGL that targets mobile de-
vices. Version 2.x was released in 2007 and includes shader programs. It
roughly implements functionality comparable to OpenGL version 2.0. 4,
24, 25, 28, 29, 63, 64

OpenGL|ES 3.0 Rendering API derived from OpenGL that targets mobile de-
vices. Version 3.x was released in 2012 and implements many features
present in modern-ish OpenGL. 4, 24, 25, 29, 63, 64

participating medium A participating medium is a volumetric effect where a
large number of small particles (for example water droplets) affect light
passing through the volume. Typical examples of participating media
include fog, clouds and smoke. Section 3 is dedicated to the topic of real-
time rendering in the presence of participating media. 2, 4, 5, 11, 15, 18, 30,
61, 63, 64

radiance The 5D function L (x, ω). Conceptually, the function describes the
amount of light traveling into a direction ω at the position x. 14

rasterization The process of translating a vector-based model into a 2D raster
image (i.e., a pixel based image). In real-time rendering, models typi-
cally consist of triangles; GPUs contain specialized hardware that assists
rasterization of triangles. 62

reduction Operation that reduces many inputs into a single result. For example,
a reduction with addition as its operator would compute the sum of all
input elements. Reductions are further discussed in Section 2. 7–9

RSM – reflective shadow map A shadow map that additionally contains infor-
mation about reflected light in a color buffer. 18

scan Operation that, for each input element, computes a reduction of all preced-
ing input elements. Scans are further discussed in Section 2. 7–10

scattering The process where a participating medium scatters light, i.e., causes
light to change direction. Generally, two flavours of scattering, in- and
out-scattering, are considered separately. The former increases the amount
of light in a certain direction, and the latter removes light traveling in a
given direction. Out-scattering is often combined into extinction together
with absorption. 12, 61, 62

shader Short for ‘shader program’. Shader programs are (small) program that
run at various stages of the graphics pipeline. For example, vertex shaders
are run for each input vertex; and fragment shaders are run for each
view sample that needs to be shaded. Fragment shaders compute, for

64

example, the color of a fragment based on interpolated inputs derived
from the vertex shader’s output. Shader programs in OpenGL are typically
compiled on-line – that is, a shader program’s source code is passed to the
OpenGL API. 16, 17, 27, 29, 62, 63, 65

shadow map A shadow map is a texture that stores the distance (depth) from
the light to the surface closest to the light. A point is in shadow if it is
further from the light than corresponding point in the shadow map. A
shadow map can be created by rendering the scene from the light’s point
of view to a frame buffer with a single depth buffer attachment. 64

SPU – synergistic processing unit A special purpose processor present in the
Cell processor, which is used by the Playstation3. 21

stream compaction Operation that copies selected (valid) elements from an
input buffer to an output buffer. Copied elements are placed in a compact
range in the beginning of the output buffer. Stream compactions are
discussed in Section 2 and are the main topic of Paper I. 5–10, 65

stream split Operation related to stream compaction. While a stream com-
paction ignores invalid elements, a stream split places invalid in the second
part of the output buffer, after the last valid element. Stream splits are
discussed in Section 2. 7–9

texture An array (often, but not necessarily, 2D) that contains data with typi-
cally 1-4 channels (e.g., RGB, RGBA). Shaders can sample textures. Sample
locations do not need to correspond to exactly one element in the array, but
are interpolated according to a pre-determined interpolation mode. (Origi-
nally, textures were mainly used to apply images/bitmaps to surfaces.) 13,
28, 29, 62, 65

tile In the context of tiled shading, a tile refers to a 2D rectangle of adjacent
pixels or view samples. In this context, tiles typically have an associated
depth range derived from the contained view samples. This depth range,
together with the 2D extends of the tile, defines a 3D bounding volume in
which encompasses all view samples contained in the tile. 21–23, 30, 61, 65

tiled shading Tiled shading reduces shading costs by identifying the light
sources that affect each tile. Pixels in each tile then only need to com-
pute lighting from the light sources assigned to their tile. See Section 4 for
further information. 21, 22, 26, 28

view ray A ray extending from the viewer (the camera), through a view sample,
and into the scene. Figure 6 illustrates two view rays. 12, 13, 15–17

view sample In the context of tiled and clustered shading (Paper IV), the term
view sample refers to either a fragment generated during forward shading,
or a sample retrieved from the G-buffer. The goal of tiled and clustered

65

shading is to efficiently shade all view samples, regardless of whether
forward or deferred shading is employed. 19, 20, 22, 23, 28, 61–65

VPL – virtual point light A light source generated to represent indirect illumi-
nation. VPLs are often automatically generated from other light sources.
For example, a white light shining at a green surface might generate one or
more green VPLs that represent green light reflected of the green surface..
25

warp In CUDA, a warp is a group of 32-threads that execute in lockstep, i.e.,
all 32 threads always issued the same instruction (although individual
threads can be masked, in which case the instruction has no effect). The
hardware schedules execution on a per-warp basis and threads do not
migrate between warps. 9, 10

66

	Abstract
	Acknowledgments
	Credits
	List of Appended Papers
	Other Contributions
	Table of Contents
	I Summary
	Introduction
	Real-time Rendering
	Tools of Trade
	Overall Objective and Problem Statement
	Main Contributions
	Structure of the Thesis

	Parallel Primitives
	Paper I

	Participating Media
	Paper II
	Paper III

	Many-Light Shading
	Paper IV
	Paper V

	Discussion and Future Work
	Recent Advances to Clustered Shading
	Tiled Shading on Mobile Devices
	Future Directions & Conclusion

	 Bibliography

	II Appended Papers
	– Efficient Stream Compaction on Wide SIMD Many-Core Architectures
	– Real Time Volumetric Shadows using Polygonal Light Volumes
	– Real Time Multiple Scattering using Light Propagation Volumes
	– Clustered Deferred and Forward Shading
	– Cloud-Assisted Indirect Illumination on Mobile Devices

	Glossary

