
1

2

Hello & welcome to this last part about many light rendering on mobile hardware, i.e.
on devices like smart phones and tablets. ▶▶▶

3

<contd.>

My presentation consists of three different parts: first, I’m going to start with a short
introduction about mobile hardware in general, and point out some the differences
and limitations compared to the high-end systems that this course has focused on so
far. ▶▶▶

4

<contd.>

Next, there’s a review of different many light rendering techniques. If you’ve been
here since the beginning, you’re already familiar with quite a few of them – besides
reviewing each method quickly one more time, I’m also going include some notes
regarding their suitability for running on mobile hardware. If you decided to sleep in,
you’re in luck too: this part includes very short summaries of parts of Ola’s material
from earlier this morning. ▶▶▶

5

<contd.>

Towards the end, I’m going to talk about a clustered implementation that I developed
with smart phones and tablets in mind. It performs a slightly different trade off
compared to other methods you’ve seen today. Even though it’s been developed with
mobile HW in mind, it could be interesting in other areas as well. One of the
secondary goals with this is to somewhat show the flexibility of the clustered-shading
idea, where you can mix up the method to really match your specific use case.

6

7

As already mentioned once, this course has mainly considered modern high-end
systems – that is, dedicated desktop-class GPUs and perhaps game consoles. Now
that we’re looking at mobile hardware… what are the differences and challenges we
have to deal with?

8

If we compare the absolute specs, that is e.g., the absolute computational power and
memory bandwidth that’s available, I don’t think it’s too surprising to find that mobile
hardware clocks in quite a bit lower than the high-end desktop: we get about one
order of magnitude less of both computational power and memory bandwidth on
average.

The computational work load we have some amount of control over, we can reduce it
by for example considering fewer lights per pixel during shading. Memory bandwidth
is a bit trickier, so it’s important to look for methods that conserve bandwidth.
Furthermore, bandwidth is expected to improve more slowly than computational
power. ▶▶▶

9

<contd.>

When talking about mobile hardware, it’s hard to avoid the topic of energy
consumption. If it’s possible, reducing energy consumption from the software side of
things is definitively something worth considering. Not only for the improved battery
life, but also to avoid running into thermal limits that might cause the device to run at
lower performance. Fortunately, our goal to conserve memory bandwidth helps us
here, since memory transactions are quite power hungry – earlier this week, I saw a
figure citing up to 16% of the total energy consumption being attributed to memory.

Finally, I’d still claim that mobile hardware lags behind in terms of features, at least if
we’re considering the devices currently out there. With this said, however, the gap
seems to be closing quickly. Regardless, I’ll show some numbers about this.

10

This first table shows the support for different OpenGL ES versions as seen on “active”
Android devices observed accessing the Google Play Store during some period in June
this year.

11

This second table the same information, but this time as measured by the Unity
Mobile Hardware survey. It shows rather similar figures, albeit this time including
non-Android devices.

12

The good news is that there’s a respectable chunk of ES 3.0 devices, around 40%,
which is nice. ES 3.1 is still a bit scarce, though – something around 2%. And while ES
3.2 was announced a few days ago, unsurprisingly, it’s adoption today is still sort of
low…

Finally there’s the big chunk of ES 2.0 devices, which covers the remaining close-to-
60%. ▶▶▶

13

<contd.>

Because of this, I’m going to include some considerations that relate to ES 2.0 when
discussing the different many light methods.

14

One thing to point out straightaway is the lack of support for multiple render targets.
So while OpenGL|ES 2.0 supports shaders and custom frame buffer objects, the core
spec only provides for a single color render target. ▶▶▶

15

<contd.>

ES3.0 fixes that, among other things. The ES 3.0 spec provides for at least four color
attachments.

16

Some of the techniques and their variation you’ve heard about today rely somewhat
heavily on GPU compute shaders. ▶▶▶

17

<contd.>

Unfortunately, for now, the situation doesn’t look too good for that on mobile
devices.

18

Neither Android nor iOS support OpenCL officially. Some manufacturers of Android
devices include support anyway, though. ▶▶▶

19

<contd.>

The other option is to use the compute shaders included in OpenGL ES 3.1, at least if
or when you can rely on ES 3.1+ being available on your target devices.

20

So, that was mostly about the limitations and difficulties compared to high-end GPUs.
▶▶▶

21

<contd.>

Now, a large percentage of mobile GPUs are tile based renderers, or TBR for short;
this in contrast to the desktop GPUs that are typically Immediate Mode Renderers, or
IMR for short. The main difference between these two architectures has some
interesting implications, so let’s look at how these two differ. ▶▶▶

22

<contd.>

Small note: there are IMR based mobile GPUs too.

23

An immediate mode renderer is what I’d consider a “traditional” HW pipeline. Here,
the geometry is stored in (V)RAM and submitted to the GPU in batches. The GPU
transforms the geometry in the geometry processing stage, that is in the vertex
shaders and so on, and then immediately sends the results to be rasterized and
shaded via some on-chip mechanism. ▶▶▶

24

<contd.>

The results from the shading are merged into the framebuffer that here typically
resides in VRAM in its entirety. ▶▶▶

25

<contd.>

The VRAM is written to multiple times when there’s overdraw.

26

Now, let me compare this to a tile based renderer instead. ▶▶▶

27

<contd.>

Tile based rendering gets its name from the fact that the framebuffer is subdivided
into many tiles. When the application submits geometry, it’s transformed as normally.
But instead of being rasterized immediately, the transformed geometry is binned into
the tiles and stored for future processing. ▶▶▶

28

<contd.>

At some later point, for example when all geometry has been submitted, each tile is
processed. Tiles can now be processed independently. The geometry associated with
each tile is rasterized and shaded. The trick here is that each tile’s portion of the
framebuffer can be kept in local on-chip memory for the whole duration of
rasterization and shading. ▶▶▶

29

<contd.>

With this we avoid multiple expensive writes (and reads) to and from RAM whenever
there is overdraw and instead hit the on-chip storage. Additionally, when rendering to
a tile has finished, the tile’s framebuffer can be compressed when it’s transferred –or
“resolved”– to RAM, which further reduces memory BW.

30

The tile’s framebuffer contents are stored to RAM only when needed. ▶▶▶

31

<contd.>

In the best case, this only happens once per frame, when all the rendering for that
frame and tile has finished.

32

According to the presented classification, quite a few of the common mobile GPUs
are all tile-based renderers, as you can see listed on the slide. The only mobile chips
that I know that are IMR are the various NVIDIA Tegra chips, such as the K1 and the
X1. Of course, most desktop GPUs are IMR as well.

33

This concludes the first part of my talk. Before I move on to the many light methods,
let me just quickly summarize the most important aspects of this introduction.

So, the majority of mobile GPUs are tile-based renderers. We definitively want to pick
a method that maps well to this hardware architecture.

34

The key feature of a tile-based renderer is that it keeps each tile’s portion of the
framebuffer in fast on-chip memory during shading. ▶▶▶

35

<contd.>

Our goal is to make sure that it can stay there, since storing it to RAM and later
loading it back from RAM uses precious memory bandwidth, which is costly in terms
of both performance and power consumption. ▶▶▶

36

<contd.>

So, yeah, our goal is to find a method that allows us to keep as much data on-chip as
long as possible.

37

<contd.>

And … we’d like to do this without negatively affecting performance on a normal
immediate-mode rendering architecture too much.

38

Important note: the tile-based renderer that I’ve been talking about so far is not the
same as the tiled shading method that you’ve heard about earlier in the course.

39

The tile-based renderer is a hardware property, and in that sense, it’s largely out of
your hands – at least if you want to support a wide variety of different devices.

Tiled shading on the other hand is a software algorithm, and it’s up to you to
implement it (or not).

40

It’s perfectly valid use tiled shading on a tile-based renderer. More about this in the
upcoming, second part.

41

We now know a bit about the mobile hardware that we’re targeting, and with this,
what properties we’d like to see in our algorithms. So now we can revisit the many-
light rendering methods and reason a bit about their suitability for mobile hardware.

42

In the first part of the course, Ola listed a number of many-light methods. I’m going to
quickly revisit some of these. I’m also including two new methods that really focus on
mobile architectures and, in this case, take special advantage of the on-chip storage.

43

Here’s a list of the methods.

The first, plain forward, serves as a sort-of base line method to compare against.
Next, there’s two deferred methods. I’ll then transition to look at the different
clustered methods, including the practical clustered that Emil presented earlier.
Finally, there’s the two new methods that both were presented by Martin et al. at
SIGGRAPH 2013. As mentioned, these specifically target TBR-like architectures.

44

A small note. For the sake of brevity, I’m not going to make any distinction between
tiled and clustered methods in this review. ▶▶▶

45

<contd.>

Tiled and clustered shading are very similar in spirit, in fact, you could consider tiled
shading to be a special case of clustering, where the dimensionality of the clustering
has been reduced from 3D to 2D.

When picking between these methods, you should anyway pick the one that matches
your use-case better. So, for a setting with very little depth-complexity and
discontinuities, such as for example a top-down view, the 2D tiling may be sufficient
and will be easier to implement.

For a full 3D first- or third-person view, clustering, on the other hand, may be a better
choice, since it’s more robust with respect to varying views and results in a more
accurate light assignment.

Even if you opt for the clustering, it might worth to see if it’s possible to adapt the
method to your use case. Depending on your needs, you might get away with a
simpler clustering with fewer depth-layers. Or you might want to perform the
clustering in a different space. In the final part of this presentation, I will quickly
present one such adaption.

46

Anyway, I’ll get started with the review of the different methods. ▶▶▶

47

<contd.>

The first of which is the plain forward rendering method.

48

Here, lights are assigned to each geometry batch that’s drawn. During shading you
then simply loop over all the lights in your fragment shader and accumulate the
results. ▶▶▶

49

<contd.>

This is pretty much the text-book way of doing rendering in OpenGL (and elsewhere),
so it should be possible pretty much anywhere, regardless of e.g. OpenGL ES version.

50

As explained by Ola in the introduction, it scales badly with large numbers of lights; or
at least it’s difficult to robustly support scenes with many lights in the general case.

51

52

So, for each method I’m going to add an entry to this table that summarizes some of
the properties. I’ll start with the plain forward. As mentioned, I’d not really consider it
a many light method. But it can get its work done with a single geometry pass, and
only needs to store the colors off-chip – the depth buffer can be discarded, unless
some later pass or screen-space techniques requires that data.

Plain forward natively supports HW-MSAA and blending, something that we will see
that most forward methods have in common.

53

Let’s move on to the next method, Traditional Deferred rendering.

54

Here, we start off by rendering the scene to generate the G-Buffers that store the
information we later need to compute the shading. ▶▶▶

55

<contd.>

After rendering the G-Buffers, we render lights using proxy geometry. ▶▶▶

56

<contd.>

For each fragment generated from the proxy geometry, we sample the G-Buffers and
then compute the contribution from the current light source. That contribution is
accumulated into the resulting framebuffer via blending.

57

So, for each light that ends up affecting a certain sample, we need to read from the
G-Buffer once and write to the framebuffer once. ▶▶▶

58

<contd.>

In addition to that, after the G-Buffers have been rendered, we need to transfer that
data off-chip, to RAM, so that it can be sampled using textures.

If we want to use the depth buffer during the second pass, to better cull the proxy
geometry, it has to be additionally restored from RAM to the on-chip storage before
the lighting pass shading can run.

59

So, for the entry for traditional deferred looks as follows:

60

<contd.>

We need the G-Buffers; there’s still only one geometry pass, and we avoid the
overshading issues. MSAA and blending on the other hand become more tricky, as is
usual with deferred techniques. Generating G-Buffers in a single geometry pass
requires support for multiple render targets, which puts this technique into
OpenGL|ES 3.0 territory.

61

Next up is the clustered and tiled deferred technique.

62

Basically, the tiled deferred method was developed to avoid some of the issues of the
traditional deferred method, namely the repeated reads from the G-Buffers and the
repeated writes to the resulting framebuffer.

63

It works roughly as follows. The scene has to be again rendered to the G-Buffers.

Further, we need to perform a light assignment. There’s a couple of different options
here, so for a basic tiled deferred variant the light assignment can be done
independently of the rendered geometry, by just projecting lights to the screen and
assigning them to the 2D tiles they overlap. ▶▶▶

64

<contd.>

More complex methods use information from the G-Buffers to compute a better light
assignment, so for instance, our original sparse clustering extracted clusters from the
depth-buffer and assigned lights only to these active clusters.

Either way, the result of the light assignment are per-tile or per-cluster lists of lights
that potentially affect the corresponding tile or cluster. ▶▶▶

65

<contd.>

Finally, there’s a single full screen pass, where the lighting is computed.

66

This full-screen pass looks as follows. For each sample, the sample’s data is read from
the G-Buffer once. We then find out which tile or cluster that sample belongs to, and
from this, which lights potentially affect the sample. At that point we can simply loop
over the lights in the shader, compute the contribution of each light source and
accumulate the results locally in the shader. Finally, we store the shaded results once
to the framebuffer.

67

Now, this technique still requires the G-Buffers, but instead of having to read from the
G-Buffers once for each light, they are sampled only once in total. Similarly, we only
need to write the final result once to the resulting framebuffer.

We also avoid having to restore the depth-buffer from RAM to the on-chip store,
since our full-screen pass doesn’t benefit from depth testing in any way. ▶▶▶

68

The original clustered method relies heavily on compute shaders to first extract the
list of active clusters and secondly to compute the light assignment.

69

<contd.>

The compute shaders can be avoided by using Emil’s Practical Clustered variation,
though. I’ll return to the Practical Clustered in a few slides, but then with focus on the
forward variant.

70

For tiled shading, the situation is a bit better. In the simplest form, the light
assignment can be done independently from the rendered geometry. Alternatively,
the light assignment can be improved by finding the min-max depth-bounds of each
tile and using that information to cull the light sources more aggressively. The min-
max depth-bounds can be reduced using e.g., a fragment shader and then read back
to system memory.

71

72

The tiled/clustered deferred method looks relatively similar to the traditional
deferred; this table doesn’t show the reduction in G-Buffer reads and framebuffer
writes, though.

73

Next, tiled and clustered forward.

74

Instead of rendering the full G-Buffers, the tiled/clustered forward method performs
a depth-only pre-pass. This again allows us to identify active clusters in the case of
clustering, or per-tile depth bounds in the case of tiling. Then, similarly to the
deferred methods, we compute per-cluster or per-tile light lists.

75

In a second pass, we render the scene “normally” in a forward fashion. For each
generated fragment, we find what cluster or tile it belongs to so that we can access
the list of lights that potentially affect the fragment. We loop over those lights, and
accumulate the contributions in the shader. ▶▶▶

76

<contd.>

For completeness, it’s also worth noting that Tiled Forward is also known as Forward+
in some publications.

77

One of the key properties of the forward variants is that they do not involve the
heavy G-Buffers. As such we also avoid requiring support for MRT. ▶▶▶

78

<contd.>

A small note: here we’re still transferring the depth buffer from the on-chip storage to
RAM, as we need access to the depth data during the light assignment. Further, if we
want to use the depths during the forward shading pass to avoid overshading, the
data needs to be transferred back as well.

79

Tiled Forward is, by the way, possible to implement with only OpenGL ES 2.0. There
are some handy extensions that make this easier, though, mainly the ability to render
to a depth texture, and being able to loop dynamically in the fragment shader.

80

81

As mentioned, the forward variation doesn’t require G-Buffers or multiple render
targets. On the other hand, with the preZ pass, at least two geometry passes are
performed. The information from the PreZ pass can be reused to avoid overshading,
albeit this comes at the cost of having to copy the depth buffer back to the on-chip
storage on additional time. Also, when accessing the depth buffer from a texture the
MSAA would have resolved, so one needs to be a bit careful with there.

Being a forward method, blending is in principle supported. Some extra work might
be required during light assignment as to ensure that the transparent surfaces also
get correct light lists, since these surfaces are not present in the depth buffer from
the preZ pass.

It’s possible to implement the tiled forward method using OpenGL ES 2.0. Finding
clusters is a bit trickier to do, and would require some more advanced features like
compute shaders or the ability to write to arbitrary memory locations from a shader.

82

This is something that the Practical Clustered-variation avoids.

83

The Practical Clustered method Emil presented previously. ▶▶▶

84

<contd.>

As he mentioned, it’s applicable to both deferred and forward shading, or even a mix
of them. For this talk, I’m mostly interested in the forward-only variant, though – and
based on the discussion of the previous technique, you can perhaps already guess
why.

85

The key idea behind the method is to perform the light assignment up-front, into a
dense cluster structure, potentially on the CPU. After this, we render the scene
normally again.

86

87

I’ll quickly summarize the properties of the practical forward method. We don’t have
any heavy G-Buffers, and compared to previous methods, we don’t even have to
transfer the depth buffer off-chip since there’s a single geometry pass, but we pay for
this by potentially getting overshading.

Blending is trivially supported, since the dense cluster structure is expected to cover
the whole view frustum, in contrast to the sparse cluster structure of the previous
method.

The overshading issues can be mitigated using standard tricks, such as front-to-back
drawing and perhaps occlusion culling. Further, it can be avoided via an extra PreZ
pass, rising the number of geometry passes to two. However, compared to previous
method, the PreZ depth buffer can stay on-chip in TBR as we’re never trying to access
it via a texture or similar.

88

The next method that I’ll briefly present is called “Deferred with Tile Storage” and
was presented by Sam Martin at SIGGRAPH 2013. It’s an interesting method because
it explicitly exploits the on-chip storage of the TBR architecture.

89

As indicated by its name, this method is very similar to the traditional deferred
method presented earlier. ▶▶▶

90

<contd.>

The main difference is that the on-chip storage of the TBR architectures is used to
temporarily hold the G-Buffer data.

Both the scene geometry and the proxy geometry of the light sources is submitted by
the application in that order. Later, when a tile is being processed, the scene
geometry is first rasterized to generate the G-Buffer data and the store it in the on-
chip buffers. Immediately following this, the light proxy geometry will be rasterized
and shaded. At this point the G-Buffer data for current tile is available in the on-chip
buffer.

91

This technique relies on some OpenGL extensions, that enable manual access to the
on-chip storage of the TBR architecture. ▶▶▶

92

They key extension is this EXT_shader_pixel_storage one.

93

<contd.>

It enables the fragment shader to store a small amount of data per-pixel. This data is
preserved across fragment shader instances, but not backed by external RAM.

So in our example, the G-Buffer is stored to this per-pixel storage, where it remains
until we’re done with the shading. But it’s never transferred off-chip to some external
buffer.

94

The on-chip storage is a bit finicky. So certain operations, such as writing to the
shaders normal color output(s) will destroy the per-pixel storage contents. It’s also
incompatible with MSAA.

For some additional details, see Sam Martin’s original presentation from SIGGRAPH
2013, and read the extension spec.

95

Time for a small Vulkan note. If you attended the Next-Gen course on Tuesday, you
might have heard of the transient FB-attachments, that is FB-attachments not backed
by an off-chip memory store. I’m guessing that you can implement this method using
those. As a bonus, the method will then transparently work on IMR systems as well,
where it essentially becomes the traditional deferred method.

96

97

Despite being a deferred method, this method doesn’t need any off-chip G-Buffers, as
the G-Buffer data stays on-chip. Like other deferred methods, it needs only a single
geometry pass and doesn’t suffer from overshading issues. It also shares the draw
backs of other deferred methods, namely that MSAA is tricky and that transparent
surfaces can’t be represented in a G-Buffer.

98

With this, it’s time for the final method in this list.

99

This method was presented at the same time as the previous one, Deferred with Tile
Storage. It also uses the on-chip storage via the same extension, but instead of
storing the G-Buffers there, it uses the storage for the light lists. ▶▶▶

100

First, a depth-only pre-pass is performed to build up the per-tile depth buffers. Next,
lights are rendered using proxy-geometry on top of that depth-buffer. During this
pass, the fragment shader is used to build per-pixel light lists into the local on-chip
storage provided by the EXT_shader_pixel_local_storage extension.

101

Finally, a forward pass is performed. Since the light lists are now available in the local
storage for each pixel, the fragment shader can access these quite efficiently.

102

There’s a few gotchas with this method. First, the size of the per-pixel light lists is
limited by the amount of storage that the EXT_shader_pixel_local_storage extension
provides to each pixel. On the ARM Mali T6xx GPUs that is only about 16 bytes. ▶▶▶

103

Second, the extension is (for now) incompatible with MSAA, meaning that the per-
pixel storage cannot be used on a render target that has HW-MSAA enabled. ▶▶▶

104

On the other hand, Martin et al. demonstrate that blending is possible with this
method, although it has to be done “by hand”, since writing to shader’s normal color
outputs would destroy the contents of the per-pixel storage and thereby invalidate
the per-pixel light lists. So, we need to allocate a few bytes of space in the per-pixel
storage to hold the results of the blending temporarily. Additionally, a final pass is
needed to “flush” this result from the per-pixel storage to the actual framebuffer –
this is done by copying the value from the per-pixel storage to the shader’s color
output.

105

In their talk, Sam Martin mentions that some of the limitations may go away in the
future. So, for instance a new improved extension may allow the per-pixel storage to
be combined with MSAA, and future devices may provide for a larger per-pixel
storage.

106

107

Much like the previous method(s), the Forward Light Stack keeps most of the
framebuffer data in the on-chip tile storage, only eventually transferring the resulting
colors to RAM. The Forward Light Stack requires two geometry passes, once to prime
the depth buffer so that the per-pixel light lists can be generated efficiently. Unlike
the deferred method also using the per-tile storage, it does support blending, but the
blending has to be done manually and requires some additional space from the per-
pixel storage, which further limits the maximum length of the light lists.

108

With this, we’ve covered the listed methods briefly, and are almost ready to move on
to the last part of the presentation.

109

The method I will be talking about in the last part is a variation of the Practical
Clustered Forward method, where I do the clustering slightly differently. But I’ll
quickly summarize some of the properties that make this method a good choice for
mobile devices in my opinion.

110

So, on the TBR platforms, we don’t need to have any off-chip buffers other than the
final color buffer. The method works transparently on IMR too, we’re not doing any
fancy-pants architecture-dependent things. This is great for a number of reasons, at
the very least because it’s possible to run and debug your renderer on a desktop GPU
with all the tools available there.

Finally, we get MSAA and blending. The former is very helpful when rendering at
lower-than-native resolution. ▶▶▶

111

<contd.>

The reviewers made us mention this – so: small caveat. I might be a bit biased here. ;-
)

112

113

We’ve shown you a few different ways of clustering view-samples for efficient light
assignment. ▶▶▶

114

<contd.>

I’ll show you one more way.

115

So, this builds on Emil’s practical clustering, with the dense data structure. ▶▶▶

116

<contd.>

A dense 3D structure potentially results in a ton of clusters, which is a bit
problematic, since that increases the cost of the light assignment.

117

So, we’d like to reduce the number of clusters somehow.

118

<contd.>

One way is to lower the resolution, but that gives us worse light assignment and
more shading work. So, there’s a trade-off here. ▶▶▶

119

<contd.>

An observation at this point is that the problem is especially … well … problematic
close to the camera. ▶▶▶

120

<contd.>

Here we get a lot of tiny clusters, and a single light source can overlap quite a lot of
them.

121

That results in a lot of unnecessary work during light assignment, since all those tiny
clusters contain more or less the same information. And, if you let your camera move
around freely, this is more or less guaranteed to occur, as the camera can move into a
light’s volume. Besides, I’d like to aim for a somewhat robust method without this
kind of gotchas.

122

The problem has been mentioned earlier, and one solution you’ve seen is to move
back the first subdivision in the depth direction. This certainly helps, but still leaves a
lot of slices in the XY direction.

123

So, I took a different approach: cascaded clustering. ▶▶▶

124

<contd.>

Instead of using a single clustering across the whole view frustum, I subdivide it into a
few “cascades”, and select the resolution for each of them individually. ▶▶▶

125

<contd.>

And, yeah, now the density of clusters is much more even. ▶▶▶

126

I select the resolution of each cascade so that I get approximately cubical clusters
with a NxN pixel footprint in the frame buffer. This is very much the same as we’ve
done earlier. But additionally, I clamp the cluster’s size to a specific minimum. ▶▶▶

127

<contd.>

So, in my tests, I ended up using 12 cascades. Of course, this depends on the ratio
between your near and far planes, so it’s something you want to be able to tweak a
bit.

128

129

With 192 lights, the clustering takes around 0.35 ms on my Galaxy Alpha device. Non-
empty clusters contain on average 3.5 lights, with the worst case in some views going
up to 20. That’s for very few pixels on the other hand, so performance isn’t too bad
even then.

130

Rendering performance is around 30ms per frame on average, with a slightly worse
worst case.

I use a PreZ pass – this improves the overall performance a bit in my case. That’s
probably related to the fact that I don’t really do any fancy culling or even front-to-
back rendering, but just throw the whole scene at the GPU.

131

So, with this I’m pretty much at the end of my talk.

I hope to I’ve shown that there are a few different many-light methods that are viable
on mobile HW. To me, the practical clustered forward variation seem like an overall
decent choice, for reasons I listed earlier.

There are a few things in the future that seem quite interesting too, so, for instance,
I’m looking forward to be able to experiment with the transient buffers in Vulkan,
assuming this stuff eventually becomes available for normal mortals.

132

We’ll get the slides online, and you can find the references there

133

