
1



2



3



4



5



I have split the talk into separate sections, representing slightly updated content that 

has been previously presented, and a new section containing all new material.

6



7



The first Just Cause had 3 global pointlights. This meant that if, for instance, three 
streetlights were enabled and you fired your gun, one of the lights would shut off for 
the duration of the gun flash. Clearly, this solution was hardly ideal.

For Just Cause 2 we switched to a world-space 2D tiled solution where light indexes 
were stored in texels. The technique has been described in detail in the article 
”Making it Large, Beautiful, Fast, and Consistent: Lessons Learned Developing Just 
Cause 2” in GPU Pro. This technique was actually in some ways similar to clustered 
shading, although much more limited and designed around DX9 level hardware. It 
worked reasonably well on platforms with decent dynamic branching, such as PC and 
Xenon, whereas the PS3 struggled. Ultimately this caused us to implement numerous 
workarounds to get PS3 running well, so that in the end this technique mostly ended 
up being a fallback option if the light count was too high for a specialized shader to 
work. The amount of specialized shaders also became quite a bit of a maintenance 
problems, and figuring out the light count a performance issue on the CPU side.

8



After Just Cause 2 we ended going the deferred shading route, initially using classic 
deferred. This worked relatively well for last generation console hardware and 
allowed us to support many more lights, different light types, shadow casting 
dynamic lights etc. This was great, but naturally we also got all the downsides of 
deferred shading, such as problems with transparency, problems with custom 
material or lighting models, as well as large increase in memory consumption. Initially 
we supported MSAA, but ultimately we dropped it in favor of FXAA for performance 
and memory reasons.

Unfortunately, the old forward pass also had to stick around for transparency to work 
to some extent, although it only ever supported pointlights and the lighting didn’t 
quite match the much more sophisticated deferred pass. For Mad Max we ultimately 
moved away from fully supporting transparency with lighting because of its problems 
with deferred, plus that the game environment has very little need for transparency 
anyway beyond particle effects. But for other projects where transparency might be 
desirable we started looking into alternatives, especially with a new generation 
consoles on the horizon at the time. 

9



For Just Cause 3, which was next-gen/PC only from the beginning, we went with 
Clustered Shading as our main lighting solution. For this kind of game it really wasn’t 
a feasible solution to limit the options for transparency beyond what we had in 
earlier games. We are still using deferred, but with clustered shading we can use the 
same lighting data for doing lighting in the forward passes for transparent objects.

A nice bonus of having properly working transparency with lighting is that we could 
now use the Wire AA technique we invented. It mostly just worked out of the box for 
Just Cause 3.

10



Here’s an illustration of what sort of lighting we have in the game. This screenshot is 
actually just one of the official screenshots, but it does a decent job at showing the 
different ranges and scales of lighting we support in the game. We have everything 
from the little light in the foreground on the shoulder of the main character, to the 
large number of light sources on the military structure in the background (all those 
white dots are actual light sources), to the distant lights in the upper-left corner of 
the image, which are also actual light sources in the game data, but not loaded at this 
distance and only visualized with point sprites to breath life into the game world at 
large distances.

11



Tiled Deferred Shading and Forward+ (Tiled Forward Shading) are production proven and 
have shipped in real games, but they come with a bunch of drawbacks. Tiled deferred offers 
better performance than classic deferred, but doesn’t really solve any of our problems since 
all drawbacks of classic deferred stays around. In addition, it also imposes a new restriction in 
that all lights, and consequently shadow buffers, are now required up-front. However, this is 
a property it shares with all other techniques, including Forward+ and Clustered Shading, and 
even our old forward solution from JC2.

Tiled Forward (a.k.a. Forward+) has the advantage of working well with MSAA without 
hassles; however, while it can be made to work with transparency, it requires an extra pass, 
including another round of pre-z. The requirement of a full pre-z pass for this technique to 
work made this a non-starter for us. We didn’t bother implementing it for evaluation 
purposes as a full pre-z pass is not an option for us. We did at one point have a fairly 
complete pre-z pass in Just Cause 2, but over the development the pre-z pass was 
continuously trimmed until very little remained. The additional overhead just didn’t pay off, 
and the large increase in draw-call count was problematic. After we got a decent occlusion 
culling system in place there were very few cases pre-z did not, in fact, result in a 
performance drop. Pre-z is now only enabled on a handful of things specifically marked for 
pre-z by content creators, and a few code-driven systems that need it for other reasons.

Clustered Shading has the advantage of not requiring a pre-z pass, even in its forward 
incarnation, while working well with MSAA and transparency out of the box with no 
particular tricks or hacks. While Avalanche Studios pioneered this technique for the games 
industry, it actually ended up first shipping in Forza Horizon 2. When we first started out 
exploring this technique it wasn’t production proven, but at this point it is. At Avalanche 
Studios we have used it in production since January 2013 and by the end of 2015 it will ship 
in Just Cause 3.

12



Clustered Shading is really decoupled from the choice between deferred or forward 
rendering. It works with both, so you’re not locked into one or the other. This way 
you can make an informed choice between the two approaches based on other 
factors, such as whether you need custom materials and lighting models, or need 
deferred effects such as screen-space decals, or simply based on performance.

The two tiled solutions need quite a bit of massaging to work reasonable well in all 
situations, especially with large amounts of depth discontinuities. There are proposed 
solutions that mitigate the problem, such as 2.5D culling, but they further complicate 
the code. For Clustered Shading it just falls out automatically and depth 
discontinuities do not cause performance problems. This allows Clustered Shading to 
maintain a more stable frame-rate regardless of scene depth complexity.

13



I will illustrate the point using a random screenshot from Just Cause 3. Now this isn’t 
a hand picked screenshot to show off the worst case, in fact, I wasn’t able to pick a 
screenshot myself. This was hand-picked by marketing for being awesome. But even 
so, it’s representative of what you can expect in the Just Cause series and really 
shows that this is a real problem in real games, and certainly so in the games that we 
make.

14



Here a number of large depth differences have been manually painted over the image 
to illustrate where you might expect a problem for tiled shading techniques. As you 
can see, they are fairly common and affect a fairly large part of the screen. One 
source of pain that’s not too well illustrated here, is vegetation, which tends to create 
lots of nasty depth discontinuities. There are some forests here, but for ground level 
gameplay you can certainly expect much more of that problem.

15



Now, if you thought the previous image looked bad, now put that into the context of 
an actual tiled setup. Here I have illustrated all the tiles that would be affected by the 
problem, and as you can see, a quite large percentage of the screen suffers from 
suboptimal lighting from depth discontinuities.

16



The original paper [Olsson et. al 12] was written by academics, and naturally the direction of 
their research doesn’t match 100% with the requirements of the a game engine. We don’t 
have millions of tiny lights, but between hundreds and thousands of mostly artist placed 
lights, that are on a human scale. This meant that tight culling, so as to not add lights to more 
clusters than necessary, became more important to us. The higher-order clustering options 
the paper explored (and also largely rejected) were also something that we didn’t expect to 
work for us. Deriving the explicit cluster bounds was something that could be interesting, but 
we found that sticking to implicit bounds simplified the technique, while also allowing the 
light assignment to run on the CPU. This enables DX10 level GPU compatibility, which initially 
felt like a good idea, but at this point doesn’t add much value to us since we are firmly stuck 
in DX11 land anyway for other techniques we are using. But the important point is that gives 
us scene independence. This means that we don’t need to know what the scene looks like to 
fill in the clusters, and this also allows us to evaluate light at any given point in space, even if 
it’s floating in thin air. This could be relevant for instance for ray-marching effects.

The paper only explored pointlights, whereas we need spotlights as well. We also needed a 
shadow solution, which the original paper also did not explore. However, Olsson et. al. has 
since continued their research and have now an interesting shadow approach made for 
clustered shading. We have however stuck with our own simpler approach. Finally, our 
games are massively large while still being played on human scale, resulting in a depth span 
from very near to very far, which required some extra fiddling to get rolling with clustered 
shading.

17



We are still using a deferred engine, but we could change to forward at any time 
should we decide that to be better. The important part is, however, that the 
transparency passes can now use the same lighting structure as the deferred passes, 
making it a unified lighting solution. Since we are still using deferred, and thus 
obviously have a complete depth buffer once we get to the deferred lighting pass, we 
could potentially use explicit bounds there. We still haven’t explored that 
opportunity, but it’s an option. It’s unclear if computing the explicit bounds, plus an 
extra round of culling, is going to be outweighed by potentially faster light evaluation.

Currently we are using 64x64 screen-space tiles, and 16 depth slices. This is most 
likely going to change, primarily because currently the tiles are currently fairly long 
and thin, and this is not optimal for a culling, in particular for spotlights. We have 
been experimenting with other setups, such as 128x128 and 32 depth slices. This 
created more cubical shaped clusters and helped with culling, which helped with 
culling, especially for spotlights. Another option we have considered, but not yet 
explored, is to not base it on pixel count, but simply divide the screen into a specific 
number of tiles regardless of resolution. This may reduce coherency on the GPU side 
somewhat in some cases, but would also decouple the CPU workload from the GPU 
workload and allow for some useful CPU side optimizations if the tile counts are 
known at compile time.

18



We are using exponential depth slicing, much like in the paper. There is nothing 
dictating that this is what we have to use, or for that matter that it is the best or most 
optimal depth slicing strategy; however, the advantage is that the shape of the 
clusters remain the same as we go deeper into the depth. On the other hand, clusters 
get larger in world space, which could potentially result in some distant clusters 
containing a much larger amount of lights. Depending on the game, it may be worth 
exploring other options.

Our biggest problem was that our depth ratio is massive, with near plane as close as 
0.1m and far plane way out on the other side of the map, at 50,000m. This resulted in 
poor utilization of our limited depth slices, currently 16 of them. The step from one 
slice to the next is very large. Fortunately, in our game we don’t have any actual light 
sources beyond a distance of 500m. So we simply decided to keep our current distant 
light system for distances beyond 500m and limit the far range for clustering to that.

This improved the situation notably, but was still not ideal. We still burnt half of our 
slices on the first 7 meters from the camera. Given how our typical scenes look like, 
that’s likely going to be mostly empty space in most situations. So to improve the 
situation, we made the first slice special and made that go from near plane to an 
arbitrary visually tweaked distance, currently 5m. This gave us much better utilization.

19



This illustrates our distant light system, which has been around since Just Cause 2. In 
this screenshot there are likely no actual lights enabled since we’re far from 
civilization on top of a mountain, except perhaps our fake ”night light” that slightly 
illuminates the area around the player at night to help game-play a bit in the 
darkness. Everything in the distance though, while representing actual artist placed 
lights, the actual light sources aren’t loaded at this distance. They are simply stored as 
a very compact list of point sprites, resident in memory at all time, and which is very 
cheap to render. We are at this point still using the same forward rendering solution 
here as in Just Cause 2, but one option now that we are using deferred is to actually 
compute real lighting under those sprites instead of just a putting a blob from a 
texture there.

20



Here the same system can be seen in effect in Just Cause 3. To the right of Rico’s arm 
and in the upper right corner we have instances of the distant light system, but also if 
you look down into the fog in a bottom left corner.

21



And in this screenshot you can also see the effect as a few lights in the distance in the 
upper center part of the screen.

22



This illustrates the benefit of the special near cluster. Fewer slices are wasted, and the 
cluster shapes aren’t quite as long and thin.

23



Given a screen position and a depth value (whether from a depth buffer or the 
rasterized depth in a forward pass) we start by looking up the cluster from a 3D 
texture. Each texel represents a cluster and its light list. The red channel gives us an 
offset to where the light list starts, whereas the green channel contains the light 
counts. The light lists are then stored in a tightly packed lists of indexes to the lights. 
The actual light source data is stored as arrays in a constant buffer.

All in all the data structure is very compact. In a typical artists lit scene it may be 
around 50-100kb of data to upload to the GPU every frame.

24



This shows the shader code for rendering with this data structure. The input is just 
the screen-space position and depth. This shows a deferred pass where depth comes 
from a texture, but in a forward pass the second line of code would simply use 
In.Position.z instead. Everything else would be identical, which shows how easily this 
technique adapts to either deferred or forward.

The ZParam.xy here contains the same parameters that you would use to compute a 
linear depth from a Z-buffer value, except I eliminated the division since that just 
becomes a negative under the logarithm, i.e. log2(1/(z*a+b)) = log2(z*(-a)+(-b)).

25



The light list could theoretically become huge. Say you have a total of 30*17*16 
clusters at 1080p, and allow up to 256 lights per cluster, that would need 4MB, which 
with double-buffering (because it’s updated from the CPU) means you’ll need 8MB. 
Perhaps not a problem on next-gen, but hardly ideal, and who knows how many 
times these numbers will be bumped before you ship.

Normally, not every light affects every cluster in a scene. In fact, it’s extremely rare 
that you get even remotely close to that. So we constructed a somewhat plausible 
worst-case scenario with loads of large lights jammed in front of the player and 
recorded the max utilization ever encountered. Then multiplied up that for some 
extra margin. Even after that, the resulting buffer size we needed to allocate was far 
smaller. Naturally though, if you go down this path, it’s clearly important to add 
runtime assertions and warnings to make sure you don’t ever go above what you 
actually have allocated. Done correctly, at worst you would have artifacts for that 
extreme frame where a thousand nukes blew up in the player’s face.

26



Let’s discuss the problem of depth discontinuities and illustrate how clustered 
shading solves it. Here’s a sample frustum with some depth values, including a few 
discontinuities.

27



Here we added the tiles.

28



And this is the depth ranges you would get for a plain tiled shading algorithm. Clearly 
some ranges are fairly large.

29



With 2.5D culling the situation is notably improved. Now lights in the discontinuity 
area are not included. However, we do pay the full cost lights at both ends for both 
sides of the discontinuity. Also note that one very long depth range remains. This is 
because it’s not discontinuous, it’s a continuous slope. This situation would happen if 
you look down a hallway, or the ground plane, or moderately large surface at a 
grazing angle.

30



Now let’s look at a clustered frustum.

31



These are the depth ranges that we will need to consider. Note that we are paying for 
exactly one cluster’s depth at any given point.

32



If we go to explicit cluster bounds, the situation is even further improved, although in 
practice there may not be a huge difference between a fairly small range and an even 
smaller range, depending on the typical size of light sources.

33



Here we see the improvement from implicit bounds to explicit.

34



And here all techniques are compared. As you can see, explicit clustered is always the 
tightest. However, there are definitively areas where tiled with 2.5D culling is tighter 
than implicit cluster bounds. So in scenes with little depth complexity tiled could very 
well be faster. However, implicit clustered bounds does not have any areas that are 
extremely bad, regardless of depth complexity, and would thus perform more 
consistently. Most importantly, its worst case performance is much better than tiled.

35



Here we can see the impact of adding 2.5D culling to a tiled technique. While it helps 
in the discontinuity case (although does not reach clustered’s performance), it 
doesn’t help much or at all in a depth slope situation.

36



So the difference between tiled and clustered is that we pick a light list on a per-pixel 
basis instead of per-tile, depending on which cluster we fall within. Obviously though, 
in a lot of cases nearby pixels will choose the same light list, in particular neighbors 
within the same tile on a similar depth. If we visualize what light lists were chosen, 
we can see that there are a bunch of different paths taken beyond just the tile 
boundaries. A number of depth discontinuities from the foliage in front of the player 
gets clearly visible. This may seem like a big problem, but here we are only talking 
about fetching different data. This is not a problem for a GPU, it’s something they do 
all the time for regular texture fetches, and this is even much lower frequency than 
that.

37



The thing you might worry about though is divergent branches. However, despite 
fetching different light lists from pixel to pixel, the situation is not nearly as bad as 
you might expect from the previous picture. Chances are that the light lists look fairly 
similar. If you have one light lists with 5 lights and another with 5 lights (that are not 
necessarily the same as the other ones), branching will still be 100% coherent. You 
may pay a small overhead from the ideal when the lists have different light count, but 
that is typically going to be a relatively small overhead. In the worst-case scenario (no 
coherency at all), the amount of shading essentially boils down to what tiled shading 
has to shade.

38



Our light sources are typically artist placed, scaled for human environments in an 
outdoor world, so generally speaking from meters to tens of meters. So a light source 
generally intersects many clusters. The typical sphere-frustum tests that you can find 
online are not suitable for this sort of culling. They are made for view-frustum culling 
and based on the assumption that the frustum typically is much larger than the 
sphere, which is the opposite of what we have here. Typically they simply test sphere 
vs plane for each six planes of the frustum. This is conservative, but lets through 
spheres that aren’t completely behind any of the planes, such as in the frustum 
corners. The result you get is that green rectangle, or essentially a ”cube” of clusters 
around the light. But that’s also the first thing we compute. We simply compute the 
screen-space and depth extents of the light analytically first, so this test doesn’t 
actually help anything at all after that.

39



Most frustum culling code is written with the scenario on the left in mind. We need 
to handle the scenario on the right.

40



One way to go about frustum culling is testing all planes, all edges and all vertices. 
This would work, but be too costly to outweigh the gains from fewer false positives. A 
fast, conservative but relatively tight solution is what we are looking for. There are 
many approaches that seem fitting, but there are also many complications, which has 
ultimately thrown many of our attempts into the garbage bin. One relatively 
straightforward approach is to cull against the cluster’s AABB. This is fast and gives 
fairly decent results, but it’s possible to do better.

41



Starting with the ”cube” of clusters around the light, in our outer loop we iterate over 
the slices in z direction. We intersect the sphere with the slice where it is the widest. 
This results in a circle of a smaller radius than the original sphere, we thus continue in 
the y direction using a sphere of this smaller radius and the circle’s midpoint. In the 
center slice we simply proceed with the original sphere. We repeat this procedure in 
y and have an even smaller sphere. Then in the inner loop we do plane vs. sphere 
tests in x direction to get a strip of clusters to add the light to.

To optimize all the math we take advantage of the fact that in view-space, all planes 
will have components that are zero. A plane in the x direction will have zero y and 
offset, y direction has zero x and offset, and z-direction is basically only a z offset.

The resulting culling is somewhat tighter than a plain AABB test, and costs about the 
same. Where AABB culls around 15-25%, this technique culls around 20-30% from 
the “cube” of clusters.

42



Here’s the result visualized in 3D.

43



This shows the gist of the culling code.

44



For spotlights we begin by finding the ”cube” of clusters around the light’s sphere, 
just like for pointlights, except this cube typically is much larger than necessary for a 
spotlight. However, this analytical test is cheap and goes a long way to limit the 
search space for following passes. Next we find a tighter ”cube” simply by scanning in 
all six directions, narrowing it down by doing plane-cone tests. There is likely a neat 
analytical solution here, but this seemed non-trivial. Given that the plane scanning 
works fine and is cheap we haven’t really explored that path.

Note that our cones are sphere-capped rather than flat-capped. That’s because the 
light attenuation is based on distance (as it should), rather than depth. Sphere-
capped cones also generally behave much better for wide angles and doesn’t become 
extremely large as flat-capped cones can get.

45



Finally, for the remaining ”cube” of clusters we cull each cluster with a sphere-capped 
cone vs. bounding sphere test. For this to work well we have to have relatively cubical 
shaped clusters, otherwise the bounding sphere becomes way oversized. Overall this 
technique results in a moderately tight culling that is good enough for us so far, 
although there is room for some minor improvement.

46



Here’s the result visualized in 3D. Although our spotlights are sphere-capped, our 
debug visualization still draws them as flat-capped. That’s why it might look like it’s 
extending a bit outside the clusters.

47



Here’s the result with a handful of pointlights and spotlights enabled in a scene. The 
number of pointlights goes into red, and number of spotlights into green.

48



Classic deferred has the advantage that you can iterate light by light, and thus reuse 
resources such as shadow buffers in between. This saves some memory, which may 
be needed on current generation consoles. On PC and next-generation consoles this 
is not nearly as big a problem.

With the switch to clustered shading the cost of adding a new light to the scene is 
small. Artists can now be moderate ”wasteful” without causing much problems 
performance-wise. This is not true for rasterizing shadow buffers. They remain 
expensive, and relatively speaking going to be more expensive going forward since it’s 
often a ROP-bound process, and ROPs aren’t getting scaled up nearly as much as ALU. 
So we still need to be a bit conservative about how many shadow casting lights we 
add to the scene.

An observation that was made is that artists often place very similar looking lights 
close to each other. In some cases it is to get a desired profile of a light, in which case 
the two lights may in fact be centered at the exact same point. But often it is 
motivated by the real world, such as two headlights on car. Some vehicles actually 
have ten or more lights, all pointing in the same general direction. Rendering ten 
shadow buffers for that may prove to be far too expensive.

49



Often it works just fine to share a single shadow buffer for these lights. While the 
shadow may be slightly off, this is usually not something that you will notice unless 
you are specifically looking for it. To make this work the shadow buffer is decoupled 
from lights and the light is assigned a shadow buffer and frustum from which to 
extract shadows. The shadow frustum has to be large enough to include all the 
different lights that uses it.

50



Given that we are doing the light assignment on the CPU, one may suspect that this 
will become a significant burden for the CPU. However, our implementation is fast 
enough to actually save us a bunch of CPU time over our previous solution. In a 
normal artist lit scene we recorded 0.1ms on one core for clustered shading. The old 
code supporting our previous forward pass for transparency that was still running in 
our system was still consuming 0.67ms for the same scene, a cost that we can now 
eliminate.

As of this writing, further optimizations have been made resulting in another 30-50% 
lower CPU cost than previously.

51



When we have nothing but the sun light in our scene, we incur a small overhead 
compared to classic deferred shading from looking up our empty light list and looping 
zero times. Once a light or two has been entered into the scene clustered shading is 
typically faster, and in regular artist lit scenes significantly so. Once we go to extreme 
artificial test cases with hundreds of lights sprinkled randomly in front of the player, 
clustered scales really well whereas classic deferred gets significantly slower. We have 
observed cases as large as 5x more expensive, whereas typically for heavy scenes it’s 
around 2x. The difference is generally about how slow we can make classic deferred, 
rather than how fast clustered can be, as the clustered performance stays quite 
consistent, whereas classic’s performance can very quite a lot depending on the 
scene.

52



We did some prototyping on a distance based clustering strategy instead of depth. While this 
allowed pointlights to be culled efficiently and exactly, this also made the cluster lookup 
slightly more expensive. The performance gain from an exact test was small enough that only 
with extreme workloads did we gain back what we lost from slower cluster lookup and we 
were hard-pressed to find a case where it ended up being faster in practice.

Another possible approach is clustering on view-space cascades. This would allow for exact 
AABB tests. One could argue that if you are going to test using an AABB, then you might just 
as well shape your clusters that way.

World-space clusters is another interesting option. While this would utilize the available 
clusters worse, the light distribution might match real world better. The other advantage is 
that you could evaluate light outside of the view frustum. This would allow for instance a 
reflection pass (such as a rear-view mirror) to use the same lighting structure for light 
evaluation.

There may be performance gains to be had if we consider the actual lights we have when 
clustering. For instance, we could tighten the cluster bounds if the most distant light active is 
closer than 500m, and the closest one more distant than 5m. This would allow for better 
cluster utilization.

Finally, a quick conservative reduction of the depth values in a shadow buffer could allow us 
to cull some clusters based on a conservative maximum-z value over some range. Whether 
this would result in any actual performance gains is unclear though.

53



What are you waiting for? Start writing your clustered shader today! 

54



55



56



The algorithm consists of two passes for the light assignment, and then of course 
there is a shading pass. The first pass is the shell pass. This establishes the min and 
max cluster slice touched by a light source within each tile. This is done by rasterizing 
the light volume as a low-res mesh, using conservative rasterization to make sure all 
relevant pixels (corresponding to tiles) are touched. The pixel shader computes the 
exact depth range of the triangle within each pixel, and overlap is resolved using min 
blending. Actually we want min blending for the lower bound, and max blending for 
the upper bound, but we can only use one blend mode. This is accomplished by 
inverting one channel, so that min blending actually picks the inverted max. Finally a 
fill pass is run as a compute shader. It simply collects all the depth ranges and fills in 
the clusters for each light.

57



We need one draw-call per light type. So if you support say pointlights and spotlights 
you get a grand total of two draw-calls, using instancing.

The geometry shader is only really needed for be able to assign an output texture 
array slice. This can actually be done using a vertex shader now in DX12, but wasn’t 
possible at the time when this research was conducted. We expect a healthy 
performance boost for moving this to the vertex shader instead and dropping the 
geometry shader entirely.

The output is a small but deep texture array. There are probably other arrangements 
that would better utilize the memory, given that rendertargets tend to have hefty 
alignment requirements. Combined with a viewport array this could probably be 
improved, but we haven’t had time to explore that.

58



The pixel shader is relatively complicated, needing to compute the exact depth range 
for the intersection with the pixel, with many different cases. Fortunately, while the 
shader is long, it only needs to run on very few pixels.

59



The fill pass fills out the clusters with the relevant lights. This was done using a linked 
list. There are probably other options that would also work, but this was never the 
bottleneck.

60



The main takeaway is the we can create really tight light assignment, with essentially 
no false positives.

61



48x24, 64 slices, exponential, is fastest.

24x12, 64 slices, exponential, is best choice due to memory overhead.

62



The other contribution of this work is a comparison between exponential depth 
slicing and linear. While the results are mixed, exponential tended to be the winner, 
but there were also definitively cases where linear came out on top. While 
exponential is a clear winner for large open world games with very deep depth 
ranges, the story may be different for say an indoor shooter, and most likely for top-
down games with very narrow depth range.

In the screenshot here we can see how the clusters maintain their shape across 
different distances; however, close up one may argue that the clusters are wastefully 
small compared to the light sources, where in the distances they tend to be overly 
large.

63



And in the linear case the depth ranges stays the same, thus keeps a constant ratio 
compared to the typical light sources, but on the other hand gets either very long and 
thin up close, or very squished in the distance.

64



This is a demo application I did and released on my website (www.humus.name). It 
shows one way to implement Clustered Forward. It also has a reference Classic 
Deferred mode, which basically represents a demo I did back in 2008 and was really 
proud of at the time, especially with the stencil optimizations that clearly improved 
MSAA performance. However, 7 years later, classic deferred is showing its age. In this 
sample I am seeing far better performance with clustered forward, with around 5x 
better framerate with MSAA.

65



It’s important to point out that what we do in the game isn’t the only way to do 
things, and depending on your needs you may want to explore other options. In this 
demo I explored some alternative ways of implementing clustered shading, in 
particular using a fixed world-space grid for the clusters, and representing the light 
lights as bitfields. It is also done with forward shading instead of deferred.

66



With a bitfield representation, a single fetch is enough, and it’s really quick and easy 
to parse the light list. For games with only a small number of lights, this is likely the 
best option. Certainly for anything below 32 lights, maybe for some case up to say 
128 where it’s still only a single fetch, but beyond that it really depends on your 
situation, the overall light density and other factors.

67



Another things I’ve been prototyping is an old-school lightmapping approach, but for 
modern lighting solutions where we can’t reduce all lighting into a single color value 
for each lightmap texel. Instead shadows are precomputed for each light, nice and 
soft, corresponding to you regular old-school lightmaps, but with only a shadow 
factor, one for each light. Then another “light map” stores a bitfield of the active 
lights for each texel. This can be generated from the already created shadow factor 
maps. At shading time the bitfield is first fetched, then lighting is computed for the 
enabled lights as usual, and of course, only the active lights get their shadows 
fetched.

This method gets all the benefits of old-school lightmaps, while supporting modern 
lighting features, and even including a limited amount of dynamic lightings support, 
despite being mostly precomputed.

68



69



70



71


