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• Shadows for Many Lights sounds like it might mean something, but

• In fact it can mean very different things, that require very different solutions.
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• For example, very small and numerous lights may not require shadow calculations 
at all.

• An example of this is photon splatting, where occlusion resolved in the photon 
tracing.
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• On the other hand, with many very large lights we can use approximate visibility

• As errors average out, as it is called.

• An example of where this is done is Virtual point lights.
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• We aim for something  like the numbers of lights and degree of overlap we might 
expect in modern games.

• We also target fully dynamic environments, so nothing is precomputed.

• The resulting numbers of lights per pixel implies that we must calculate high-
quality shadows.

• As there will not be enough overlap to hide errors.
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• To illustrate what we are aiming for, here are some results from our paper
• This scene contains almost 400 shadow casting, omnidirectional, point lights,
• Some very large, most smaller.
• All lights and geometry is treated as dynamic.
• Even with almost 20 lights per pixel on average, we achieve…

• …a minimum of around 30 fps on a Titan GPU.
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• Here is another screen shot from a scene in our paper with an average of 13 lights 
per pixel.

• Despite this fairly high number each shadow is quite distinct, and so we need a 
non-approximate solution (which isn’t to say a non-aliased).
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• Aiming for real time pretty much necessitates the use of shadow maps for the bulk 
of the work.

• We will consider mostly omnidirectional lights and thus cube shadow maps. 

• Other light types are typically simpler and can be viewed as a special case.

• As other solutions fail to deliver this level of performance.
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• These are the steps we need to perform each frame, using the current camera 
view, to calculate a shaded scene.
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• We will now talk about the techniques presented in my paper at I3D in 2014, with 
an extended version in TVCG - out now -

• …titled More Efficient Virtual Shadow Maps for Many Lights.

• This paper in turn builds on clustered shading, 

• and adds support for shadows from hundreds of lights in real time.

• Since this paper provides efficient solutions to all the steps, it is a good starting 
point for this talk.
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• The first step is the same as determining what lights are needed for shading

• And we have already seen how this can be achieved using clustered shading and 
other methods.
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• Note that the clustered shading method we build upon here is the one described 
in the paper, not Emils eminently practical method.

• The reason for this is that we need some information about the shadow receiving 
geometry to be able to get good shadow performance. 

• Therefore, we cannot just use the up-front full grid approach.

• Two things about clusters are worth repeating in this context:

• First, the visible geometry is approximated reasonably well by the clusters, but 
there are very few in comparison. Usually around a thousand times more pixels 
than clusters, though this is of course tuneable with cluster size.

• Secondly, clustered shading provides an association between clusters and lights. 
For shading it allows us to know which lights

• affect each cluster, but also the reverse mapping, which we will make heavy use of 
to compute shadows.
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• The key data is the cluster/light pairs that enable parallel operations on these 
pairs.

• We use this for a lot of the processing later on.

• In the illustration, the pair of integers link the L0 light and the C1 cluster, the 
cluster is shown here as containing geometry, and overlapping a light, and it is 
these that we will process.
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• So, the clustered shading algorithm provides the lights affecting each cluster, and a 
light that does not affect any cluster need not be processed further.
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• Next we must work out the resolution of each shadow map
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• We could of course just pick a constant resolution…

• but then we’d not be talking about high quality shadows any more, with over and 
undersampling both being the norm.

• Using oversampled shadow maps is not just wasteful in terms of memory, it is also 
slow and may yield aliasing.
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• So what is a good resolution for a shadow map?

• Well, the easiest way to think about it is that to avoid sampling artifacts (as far as 
possible)

• Is to have one sample in the shadow map for each sample on screen…
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• One common approach (e.g., [King04]) is to simply estimate the required 
resolution of the shadow map from the projection of the light bounding sphere.

• This works well enough when the light is far away, and thus small on-screen. 
<click>
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• But produces fairly useless results when the camera is near or within the light 
sphere.

• Other approaches have been proposed that use shadow receiver locations to work 
out better estimates [Forsyth04,Lefohn07]

• From clustered shading, we have a nice and coarse representation of the shadow 
receivers…
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• Other approaches have been proposed that use shadow receiver locations to work 
out better estimates

• For example projecting shadow receiver bounding boxes onto the light. [Forsyth04]
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• Or individual samples [Lefohn07]

• This produces good results, but is expensive as there are many samples. 

• We therefore turn to…
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• You said it: the clusters
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• Each cluster has a fixed screen space footprint <click>
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• Seen from the side…
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• We see that the cluster, which by design is cubish in shape
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• Has a footprint on the shadow map
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• …which allows us to compute the required resolution as proportional to the solid 
angle

• As usual the devil is in the paper, I mean the details!
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• Going back…
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• We see that for a more distant shadow map, (or clusters closer to the SM)

• The clusters subtend a larger solid angle, and thus the shadow map resolution 
becomes smaller.
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• We perform this calculation in parallel for all cluster light pairs.

• And reduce the final result for each light using atomic operations.
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• This results in a list with a resolution for each light, or shadow map.

• Some will have zero, if they are not referenced by any cluster/light pairs, and need 
not be considered further.
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• Now, we’ll need to provide some shadow maps to match said resolutions.
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• Recall that clustered shading, like other modern modern real-time shading 
algorithms,

• have the inner loop, in the fragment shader, iterates over a list of lights.
• This means all shadow maps must exist up-front before the shading pass.
• Consequently, efficiently managing shadow map storage has become a very 

important problem.
• And this does not just mean parceling out shadow maps as needed,… 
• but ideally we should be able to store only those samples that matter.
• Several shadow algorithms do just that, but fail to achieve consistent real-time 

performance, 
• For different reasons.
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• Lets have a look again at the clusters…
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• showing their projection on the shadow map.
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• Note how a large, and irregular area is unused.

• Anything drawn into this part of the shadow map will not produce any visible 
shadow.

• Clearly we should avoid allocating memory for this region, but how?
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• Our answer is hardware supported virtual, or sparse, textures…

• These have become available in mainstream graphics APIs recently,

• and makes it possible to allocate large virtual textures, 

• …but commit physical storage in tiles only where needed.

• This fits our ideal pretty well, especially given that shadow map samples tend to 
clump together because of screen-space coherency [Lefohn07].
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• This requires project bounding boxes onto the cube maps, which is not trivial

• By transforming the cluster AABB to world space,

• and also keeping cube shadow maps in world space.

• Calculating the projection can become quite simple and fast.
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• This code is what we use to compute the projection on one cube face.

• And as you can see, it is not extremely complex.

• We repeat this, slightly differently for each face and get a rectangle in texture 
coordinates for each.

• This is then converted to a bit mask, with a single bit for each tile or page in the 
virtual cube map.

• This very quick bit-grid rasterization is something we build most of the efficiency 
improvements in our algorithm on.
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• We compute this mask, by running a cuda thread for each cluster/light pair.

• In the kernel we calculate the projection just shown

• As the mask is stored for each light and thus referenced by many cluster light pairs,

• It is updated using atomicOr.
• This is a pretty quick pass, <0.25ms, 180k light/cluster pairs.
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• The masks are copied back to the host, and used to commit pages for the shadow 
map textures.

• And here we really could use an indirect API to avoid nasty stalls!
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• So we might ask, is it worthwhile doing virtual shadow maps?

• Well, for the necropolis scene, there is a factor 26 improvement, compared to 
physical shadow maps of the same quality

• And <click>
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• …in other terms, this means the difference between impossible on a current 
console

• And something we might consider.
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• Our method achieves quite uniform shadow quality, 

• This means we can control quality and thus memory usage with a global 
parameter.

• This allows more flexibility in memory use while maintaining uniform quality.

• Rather than say, some lights getting very poor shadows and others good.

• One idea is to do this dynamically, to ensure a certain memory budget.

• Should be possible as it is very quick to work out memory usage from the used 
pages and resolutions.
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• Here is a shot showing this, with 2x or 4x global reduction in shadow map 
resolution.

• Shown are the corresponding peaks in shadow map memory usage.

• Recall that the peak is 322MB without reducing quality.
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• Zooming in, we see that the shadow aliasing is about the expected level when 
compared to edge aliasing in the image.

• This indicates that our simple scheme for calculating the required resolution yields 
reasonable results.

• With filtering, this can be acceptable, especially as it allows uniform quality rather 
than unevenly allocating shadow maps.

• Memory usage is, reduced significantly.
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• So that takes care of memory management, and we can now allocate shadow 
maps to draw into.
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• Next must rasterize triangles into the shadow maps.

• To do this efficiently requires culling, as with any rasterization, only more so.

52



• This process is just like good old view frustum culling

• In that we are trying to get rid of geometry that is not visible, or within the view-
volume.

• And that we do this by testing bounding volumes representing batches of triangles.
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• What is not like view frustum culling is that we need to perform hundreds of these 
tests.

• The view volumes are quite small, or short, given the limited range of the lights

• There are 6 adjacent frustra sharing planes.

• And this adjacency is an opportunity to share calculations.
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• Here is the somewhat condensed code we use to calculates the culling mask, with 
a bit for each cube face.

• This a very efficient, testing only 6 planes for six frustums. (click)

• Especially as the plane equations are all ones and zeroes, (click)

• Which means that if the loop is unrolled, most of this code just goes away!

• I think this is a rather big advantage with cube maps, over using separate frustums 
(As done in [Forsyth04]).

• This efficiency is especially important given that we will be culling a lot more 
objects than normal culling!

• How so, I hear you say?

• Glad you asked!
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• You see, to enable effective culling, as in getting rid of a large proportion of the 
triangles, batches must be small, 

• Intuitively, for any culling operation, the optimal size of batches correlates to the 
size of the frustums.
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• If batches are too large, the triangles get replicated into most cube faces 
replicated.
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• Smaller batches, enables 
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• More precise culling, and thus fewer triangles drawn.

• So we are trading increased culling work for fewer triangles drawn.

• Triangle drawing is the biggest performance bottleneck so this is important to be 
able to tune.
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• We used batches around 100 triangles, 

• A batch is represented by an AABB and a list of triangles and they are constructed 
in a pre-process.

• The batches are stored in a flat array that is loaded into the runtime.
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• At run-time the batch bounds are updated and a simple BVH is constructed on the 
GPU

• This is then traversed for each light to build a list of batches for each shadow map.
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• Recall the projection of the clusters on the shadow map.

• And how a large, and irregular area is unused.

• Apart from storing this region, it is also a bit silly to draw anything into it!
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• We implement this with a pass over all the results from the previous step.

• The kernel just loads the light and cluster, and computes the projection for the 
cluster

• For any face where there is no overlap, the cube face mask bit is cleared, meaning 
it will not be drawn.

• Finally the updated CFMs are stored back, now usually with fewer bits set, and 
sometimes zero.
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• As all the culling is performed on the GPU, using CUDA, make use of modern 
OpenGL and build draw commands also on the GPU

• Then we just call multi draw indirect once for each cube map, though it could be 
done once for all in principle.
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• At the peak, we draw around 250 thousand batches into the shadow maps, with 
instancing on top.

• Using the culling techniques just outlined, this results in some 13 million triangles

• which is almost 10 times better than the naïve approach of replicating the 
triangles to all cube faces.

• And some 65% of performing culling just using the cube face mask.

• The cube face mask path actually already detects completely empty cube faces, 
and so is already quite effective.
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• Again, put differently, this is the difference between infeasible and something we 
can do in real time.
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• As a side note, our implementation achieved a fifth of the theoretical peak triangle 
rate

• So there could be some pretty good improvements for the handy optimizer out 
there.
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• We now have all the components needed to shade the scene.
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• So shading the image is simple

• The light index is just used to look up the shadow map

• Which is stored in an array texture, and so on.

• The reason we now use an array texture and not bindless textues (like last year) is 
that it is not actually conformant to the ARB spec, and is only supported on NVIDIA 
hardware.

• But even there it is very slow.
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• So we’re done… well almost.
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• To recap the logic for our improved culling, this time in 1D

• We have the projection map of the light,

• Then build the map for the batch and test against it
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• When there is any intersection, we draw the batch.
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• Now, the following frame, imagine nothing has changed.

• We now make use of the projection map of the light from the previous frame.

• This is tested against the batch projection, same as before, but!
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• If there is an overlap, we should discard the batch, because it must have been 
drawn last frame.

• Recall both light and batch are static so neither could have moved.
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• Now lets make the second batch dynamic and moving left.

• We build a dynamic batch projection map while culling, that records any dynamic 
batches drawn.
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• The following frame we intersect this map with the batch projection map

• There is no overlap so we can still discard the static batch.

• But note how the dynamic batch actually now overlaps the static batch…

• Which means that next frame, it must be re-drawn.
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• Which we discover by comparing the previous frame’s dynamic projection map.
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• Which we discover by comparing the previous frame’s dynamic projection map.
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• The dynamic projection map tells us what parts to clear and re-draw.
• Page commits have the same effect, essentially, and are treated similarly.
• This means that we can make minimal changes to the shadow maps with very little 

extra work and overhead.
• So at one extreme, if nothing moves, nothing is drawn.
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• This plot shows how this works out for the heaviest scene in the extended paper, 
necropolis.

• As you can see, the work is substantially reduced for most of the animation, 
although the peak is only moderately improved.

• This is a scene where most of the lights in the central area are moving, so this is 
perhaps not surprising.
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• Our design currently drops pages as soon as they are not used.

• This means that we might drop a page only to need to re-render it very soon again.

• If this memory is not needed elsewhere, we caused an unnecessary redraw.

• This was not a problem before we started retaining static information, 

• but now a more conservative scheme, for example based on a LRU policy is 
probably better.

• Or some other policy that avoids discarding a rendered page unless needed.

• For static lights some quality might also be traded for keeping shadow maps 
around longer.

• When a shadow map becomes lower res, we could even try resampling the higher 
res shadow map, to save further rendering.
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• I have to bring a couple of issues to your attention.

• The first, that page commits are slow, has gotten a lot better. 

• It used to be a couple of milliseconds per commit.

• However, while it can be usable for real-time performance today, there is still a 
high variability in the cost.
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